This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alephfp . (Contributed by NM, 6-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| Assertion | alephfplem3 | |- ( v e. _om -> ( H ` v ) e. ran aleph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| 2 | fveq2 | |- ( v = (/) -> ( H ` v ) = ( H ` (/) ) ) |
|
| 3 | 2 | eleq1d | |- ( v = (/) -> ( ( H ` v ) e. ran aleph <-> ( H ` (/) ) e. ran aleph ) ) |
| 4 | fveq2 | |- ( v = w -> ( H ` v ) = ( H ` w ) ) |
|
| 5 | 4 | eleq1d | |- ( v = w -> ( ( H ` v ) e. ran aleph <-> ( H ` w ) e. ran aleph ) ) |
| 6 | fveq2 | |- ( v = suc w -> ( H ` v ) = ( H ` suc w ) ) |
|
| 7 | 6 | eleq1d | |- ( v = suc w -> ( ( H ` v ) e. ran aleph <-> ( H ` suc w ) e. ran aleph ) ) |
| 8 | 1 | alephfplem1 | |- ( H ` (/) ) e. ran aleph |
| 9 | alephfnon | |- aleph Fn On |
|
| 10 | alephsson | |- ran aleph C_ On |
|
| 11 | 10 | sseli | |- ( ( H ` w ) e. ran aleph -> ( H ` w ) e. On ) |
| 12 | fnfvelrn | |- ( ( aleph Fn On /\ ( H ` w ) e. On ) -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
|
| 13 | 9 11 12 | sylancr | |- ( ( H ` w ) e. ran aleph -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
| 14 | 1 | alephfplem2 | |- ( w e. _om -> ( H ` suc w ) = ( aleph ` ( H ` w ) ) ) |
| 15 | 14 | eleq1d | |- ( w e. _om -> ( ( H ` suc w ) e. ran aleph <-> ( aleph ` ( H ` w ) ) e. ran aleph ) ) |
| 16 | 13 15 | imbitrrid | |- ( w e. _om -> ( ( H ` w ) e. ran aleph -> ( H ` suc w ) e. ran aleph ) ) |
| 17 | 3 5 7 8 16 | finds1 | |- ( v e. _om -> ( H ` v ) e. ran aleph ) |