This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alephfp . (Contributed by NM, 5-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| Assertion | alephfplem4 | |- U. ( H " _om ) e. ran aleph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| 2 | frfnom | |- ( rec ( aleph , _om ) |` _om ) Fn _om |
|
| 3 | 1 | fneq1i | |- ( H Fn _om <-> ( rec ( aleph , _om ) |` _om ) Fn _om ) |
| 4 | 2 3 | mpbir | |- H Fn _om |
| 5 | 1 | alephfplem3 | |- ( z e. _om -> ( H ` z ) e. ran aleph ) |
| 6 | 5 | rgen | |- A. z e. _om ( H ` z ) e. ran aleph |
| 7 | ffnfv | |- ( H : _om --> ran aleph <-> ( H Fn _om /\ A. z e. _om ( H ` z ) e. ran aleph ) ) |
|
| 8 | 4 6 7 | mpbir2an | |- H : _om --> ran aleph |
| 9 | ssun2 | |- ran aleph C_ ( _om u. ran aleph ) |
|
| 10 | fss | |- ( ( H : _om --> ran aleph /\ ran aleph C_ ( _om u. ran aleph ) ) -> H : _om --> ( _om u. ran aleph ) ) |
|
| 11 | 8 9 10 | mp2an | |- H : _om --> ( _om u. ran aleph ) |
| 12 | peano1 | |- (/) e. _om |
|
| 13 | 1 | alephfplem1 | |- ( H ` (/) ) e. ran aleph |
| 14 | fveq2 | |- ( z = (/) -> ( H ` z ) = ( H ` (/) ) ) |
|
| 15 | 14 | eleq1d | |- ( z = (/) -> ( ( H ` z ) e. ran aleph <-> ( H ` (/) ) e. ran aleph ) ) |
| 16 | 15 | rspcev | |- ( ( (/) e. _om /\ ( H ` (/) ) e. ran aleph ) -> E. z e. _om ( H ` z ) e. ran aleph ) |
| 17 | 12 13 16 | mp2an | |- E. z e. _om ( H ` z ) e. ran aleph |
| 18 | omex | |- _om e. _V |
|
| 19 | cardinfima | |- ( _om e. _V -> ( ( H : _om --> ( _om u. ran aleph ) /\ E. z e. _om ( H ` z ) e. ran aleph ) -> U. ( H " _om ) e. ran aleph ) ) |
|
| 20 | 18 19 | ax-mp | |- ( ( H : _om --> ( _om u. ran aleph ) /\ E. z e. _om ( H ` z ) e. ran aleph ) -> U. ( H " _om ) e. ran aleph ) |
| 21 | 11 17 20 | mp2an | |- U. ( H " _om ) e. ran aleph |