This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The aleph function has at least one fixed point. Proposition 11.18 of TakeutiZaring p. 104. See alephfp for an actual example of a fixed point. Compare the inequality alephle that holds in general. Note that if x is a fixed point, then alephalephaleph` ... aleph `x = x . (Contributed by NM, 6-Nov-2004) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephfp2 | |- E. x e. On ( aleph ` x ) = x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsson | |- ran aleph C_ On |
|
| 2 | eqid | |- ( rec ( aleph , _om ) |` _om ) = ( rec ( aleph , _om ) |` _om ) |
|
| 3 | 2 | alephfplem4 | |- U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. ran aleph |
| 4 | 1 3 | sselii | |- U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. On |
| 5 | 2 | alephfp | |- ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) |
| 6 | fveq2 | |- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> ( aleph ` x ) = ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) ) |
|
| 7 | id | |- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) -> ( ( aleph ` x ) = x <-> ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) ) |
| 9 | 8 | rspcev | |- ( ( U. ( ( rec ( aleph , _om ) |` _om ) " _om ) e. On /\ ( aleph ` U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) = U. ( ( rec ( aleph , _om ) |` _om ) " _om ) ) -> E. x e. On ( aleph ` x ) = x ) |
| 10 | 4 5 9 | mp2an | |- E. x e. On ( aleph ` x ) = x |