This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isinfcard | |- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | |- aleph Fn On |
|
| 2 | fvelrnb | |- ( aleph Fn On -> ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A ) |
| 4 | alephgeom | |- ( x e. On <-> _om C_ ( aleph ` x ) ) |
|
| 5 | 4 | biimpi | |- ( x e. On -> _om C_ ( aleph ` x ) ) |
| 6 | sseq2 | |- ( A = ( aleph ` x ) -> ( _om C_ A <-> _om C_ ( aleph ` x ) ) ) |
|
| 7 | 5 6 | syl5ibrcom | |- ( x e. On -> ( A = ( aleph ` x ) -> _om C_ A ) ) |
| 8 | 7 | rexlimiv | |- ( E. x e. On A = ( aleph ` x ) -> _om C_ A ) |
| 9 | 8 | pm4.71ri | |- ( E. x e. On A = ( aleph ` x ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) ) |
| 10 | eqcom | |- ( ( aleph ` x ) = A <-> A = ( aleph ` x ) ) |
|
| 11 | 10 | rexbii | |- ( E. x e. On ( aleph ` x ) = A <-> E. x e. On A = ( aleph ` x ) ) |
| 12 | cardalephex | |- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
|
| 13 | 12 | pm5.32i | |- ( ( _om C_ A /\ ( card ` A ) = A ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) ) |
| 14 | 9 11 13 | 3bitr4i | |- ( E. x e. On ( aleph ` x ) = A <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 15 | 3 14 | bitr2i | |- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |