This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord3 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord2 | |- ( ( B e. On /\ A e. On ) -> ( B e. A <-> ( aleph ` B ) e. ( aleph ` A ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B e. A <-> ( aleph ` B ) e. ( aleph ` A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. On /\ B e. On ) -> ( -. B e. A <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) |
| 4 | ontri1 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 5 | alephon | |- ( aleph ` A ) e. On |
|
| 6 | alephon | |- ( aleph ` B ) e. On |
|
| 7 | ontri1 | |- ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) |
| 9 | 8 | a1i | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) |
| 10 | 3 4 9 | 3bitr4d | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |