This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclprlem2 | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( xx e. ( A +P. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclprlem1 | |- ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |
|
| 2 | 1 | adantlr | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |
| 3 | addclprlem1 | |- ( ( ( B e. P. /\ h e. B ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) e. B ) ) |
|
| 4 | addcomnq | |- ( g +Q h ) = ( h +Q g ) |
|
| 5 | 4 | breq2i | |- ( xx |
| 6 | 4 | fveq2i | |- ( *Q ` ( g +Q h ) ) = ( *Q ` ( h +Q g ) ) |
| 7 | 6 | oveq2i | |- ( x .Q ( *Q ` ( g +Q h ) ) ) = ( x .Q ( *Q ` ( h +Q g ) ) ) |
| 8 | 7 | oveq1i | |- ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) = ( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) |
| 9 | 8 | eleq1i | |- ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B <-> ( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) e. B ) |
| 10 | 3 5 9 | 3imtr4g | |- ( ( ( B e. P. /\ h e. B ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) |
| 11 | 10 | adantll | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) |
| 12 | 2 11 | jcad | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) ) |
| 13 | simpl | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) ) |
|
| 14 | simpl | |- ( ( A e. P. /\ g e. A ) -> A e. P. ) |
|
| 15 | simpl | |- ( ( B e. P. /\ h e. B ) -> B e. P. ) |
|
| 16 | 14 15 | anim12i | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( A e. P. /\ B e. P. ) ) |
| 17 | df-plp | |- +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) |
|
| 18 | addclnq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) |
|
| 19 | 17 18 | genpprecl | |- ( ( A e. P. /\ B e. P. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) |
| 20 | 13 16 19 | 3syl | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) |
| 21 | 12 20 | syld | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) |
| 22 | distrnq | |- ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q ( g +Q h ) ) = ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) |
|
| 23 | mulassnq | |- ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q ( g +Q h ) ) = ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) |
|
| 24 | 22 23 | eqtr3i | |- ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) = ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) |
| 25 | mulcomnq | |- ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) = ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) |
|
| 26 | elprnq | |- ( ( A e. P. /\ g e. A ) -> g e. Q. ) |
|
| 27 | elprnq | |- ( ( B e. P. /\ h e. B ) -> h e. Q. ) |
|
| 28 | 26 27 | anim12i | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( g e. Q. /\ h e. Q. ) ) |
| 29 | addclnq | |- ( ( g e. Q. /\ h e. Q. ) -> ( g +Q h ) e. Q. ) |
|
| 30 | recidnq | |- ( ( g +Q h ) e. Q. -> ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) = 1Q ) |
|
| 31 | 28 29 30 | 3syl | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) = 1Q ) |
| 32 | 25 31 | eqtrid | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) = 1Q ) |
| 33 | 32 | oveq2d | |- ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) = ( x .Q 1Q ) ) |
| 34 | mulidnq | |- ( x e. Q. -> ( x .Q 1Q ) = x ) |
|
| 35 | 33 34 | sylan9eq | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) = x ) |
| 36 | 24 35 | eqtrid | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) = x ) |
| 37 | 36 | eleq1d | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) <-> x e. ( A +P. B ) ) ) |
| 38 | 21 37 | sylibd | |- ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( xx e. ( A +P. B ) ) ) |