This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclprlem1 | |- ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | |- ( ( A e. P. /\ g e. A ) -> g e. Q. ) |
|
| 2 | ltrnq | |- ( x( *Q ` ( g +Q h ) ) |
|
| 3 | ltmnq | |- ( x e. Q. -> ( ( *Q ` ( g +Q h ) )( x .Q ( *Q ` ( g +Q h ) ) ) |
|
| 4 | ovex | |- ( x .Q ( *Q ` ( g +Q h ) ) ) e. _V |
|
| 5 | ovex | |- ( x .Q ( *Q ` x ) ) e. _V |
|
| 6 | ltmnq | |- ( w e. Q. -> ( y( w .Q y ) |
|
| 7 | vex | |- g e. _V |
|
| 8 | mulcomnq | |- ( y .Q z ) = ( z .Q y ) |
|
| 9 | 4 5 6 7 8 | caovord2 | |- ( g e. Q. -> ( ( x .Q ( *Q ` ( g +Q h ) ) )( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 10 | 3 9 | sylan9bbr | |- ( ( g e. Q. /\ x e. Q. ) -> ( ( *Q ` ( g +Q h ) )( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 11 | 2 10 | bitrid | |- ( ( g e. Q. /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 12 | recidnq | |- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
|
| 13 | 12 | oveq1d | |- ( x e. Q. -> ( ( x .Q ( *Q ` x ) ) .Q g ) = ( 1Q .Q g ) ) |
| 14 | mulcomnq | |- ( 1Q .Q g ) = ( g .Q 1Q ) |
|
| 15 | mulidnq | |- ( g e. Q. -> ( g .Q 1Q ) = g ) |
|
| 16 | 14 15 | eqtrid | |- ( g e. Q. -> ( 1Q .Q g ) = g ) |
| 17 | 13 16 | sylan9eqr | |- ( ( g e. Q. /\ x e. Q. ) -> ( ( x .Q ( *Q ` x ) ) .Q g ) = g ) |
| 18 | 17 | breq2d | |- ( ( g e. Q. /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 19 | 11 18 | bitrd | |- ( ( g e. Q. /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 20 | 1 19 | sylan | |- ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) |
| 21 | prcdnq | |- ( ( A e. P. /\ g e. A ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |
|
| 22 | 21 | adantr | |- ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |
| 23 | 20 22 | sylbid | |- ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |