This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addclprlem2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclprlem1 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) | |
| 2 | 1 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ) ) |
| 3 | addclprlem1 | ⊢ ( ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( ℎ +Q 𝑔 ) → ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) | |
| 4 | addcomnq | ⊢ ( 𝑔 +Q ℎ ) = ( ℎ +Q 𝑔 ) | |
| 5 | 4 | breq2i | ⊢ ( 𝑥 <Q ( 𝑔 +Q ℎ ) ↔ 𝑥 <Q ( ℎ +Q 𝑔 ) ) |
| 6 | 4 | fveq2i | ⊢ ( *Q ‘ ( 𝑔 +Q ℎ ) ) = ( *Q ‘ ( ℎ +Q 𝑔 ) ) |
| 7 | 6 | oveq2i | ⊢ ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) |
| 8 | 7 | oveq1i | ⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) = ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) |
| 9 | 8 | eleq1i | ⊢ ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ↔ ( ( 𝑥 ·Q ( *Q ‘ ( ℎ +Q 𝑔 ) ) ) ·Q ℎ ) ∈ 𝐵 ) |
| 10 | 3 5 9 | 3imtr4g | ⊢ ( ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) |
| 11 | 10 | adantll | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) |
| 12 | 2 11 | jcad | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) ) ) |
| 13 | simpl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ) | |
| 14 | simpl | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝐴 ∈ P ) | |
| 15 | simpl | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → 𝐵 ∈ P ) | |
| 16 | 14 15 | anim12i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) |
| 17 | df-plp | ⊢ +P = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 +Q 𝑧 ) } ) | |
| 18 | addclnq | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 +Q 𝑧 ) ∈ Q ) | |
| 19 | 17 18 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
| 20 | 13 16 19 | 3syl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) ∈ 𝐴 ∧ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ∈ 𝐵 ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
| 21 | 12 20 | syld | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ) ) |
| 22 | distrnq | ⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) | |
| 23 | mulassnq | ⊢ ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) | |
| 24 | 22 23 | eqtr3i | ⊢ ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) = ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) |
| 25 | mulcomnq | ⊢ ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) = ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) | |
| 26 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ Q ) | |
| 27 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) → ℎ ∈ Q ) | |
| 28 | 26 27 | anim12i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) ) |
| 29 | addclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) | |
| 30 | recidnq | ⊢ ( ( 𝑔 +Q ℎ ) ∈ Q → ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = 1Q ) | |
| 31 | 28 29 30 | 3syl | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑔 +Q ℎ ) ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) = 1Q ) |
| 32 | 25 31 | eqtrid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) = 1Q ) |
| 33 | 32 | oveq2d | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) = ( 𝑥 ·Q 1Q ) ) |
| 34 | mulidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) | |
| 35 | 33 34 | sylan9eq | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 ·Q ( ( *Q ‘ ( 𝑔 +Q ℎ ) ) ·Q ( 𝑔 +Q ℎ ) ) ) = 𝑥 ) |
| 36 | 24 35 | eqtrid | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) = 𝑥 ) |
| 37 | 36 | eleq1d | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( ( ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q 𝑔 ) +Q ( ( 𝑥 ·Q ( *Q ‘ ( 𝑔 +Q ℎ ) ) ) ·Q ℎ ) ) ∈ ( 𝐴 +P 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) |
| 38 | 21 37 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝑔 ∈ 𝐴 ) ∧ ( 𝐵 ∈ P ∧ ℎ ∈ 𝐵 ) ) ∧ 𝑥 ∈ Q ) → ( 𝑥 <Q ( 𝑔 +Q ℎ ) → 𝑥 ∈ ( 𝐴 +P 𝐵 ) ) ) |