This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem1 | |- ( -. A e. B -> ( B i^i suc A ) = ( B i^i A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | |- suc A = ( A u. { A } ) |
|
| 2 | 1 | ineq2i | |- ( B i^i suc A ) = ( B i^i ( A u. { A } ) ) |
| 3 | indi | |- ( B i^i ( A u. { A } ) ) = ( ( B i^i A ) u. ( B i^i { A } ) ) |
|
| 4 | 2 3 | eqtri | |- ( B i^i suc A ) = ( ( B i^i A ) u. ( B i^i { A } ) ) |
| 5 | disjsn | |- ( ( B i^i { A } ) = (/) <-> -. A e. B ) |
|
| 6 | 5 | biimpri | |- ( -. A e. B -> ( B i^i { A } ) = (/) ) |
| 7 | 6 | uneq2d | |- ( -. A e. B -> ( ( B i^i A ) u. ( B i^i { A } ) ) = ( ( B i^i A ) u. (/) ) ) |
| 8 | un0 | |- ( ( B i^i A ) u. (/) ) = ( B i^i A ) |
|
| 9 | 7 8 | eqtrdi | |- ( -. A e. B -> ( ( B i^i A ) u. ( B i^i { A } ) ) = ( B i^i A ) ) |
| 10 | 4 9 | eqtrid | |- ( -. A e. B -> ( B i^i suc A ) = ( B i^i A ) ) |