This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem2 | |- ( A e. B -> ( B i^i suc A ) = ( { A } u. ( B i^i A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc | |- suc A = ( A u. { A } ) |
|
| 2 | 1 | ineq2i | |- ( B i^i suc A ) = ( B i^i ( A u. { A } ) ) |
| 3 | indi | |- ( B i^i ( A u. { A } ) ) = ( ( B i^i A ) u. ( B i^i { A } ) ) |
|
| 4 | uncom | |- ( ( B i^i A ) u. ( B i^i { A } ) ) = ( ( B i^i { A } ) u. ( B i^i A ) ) |
|
| 5 | 2 3 4 | 3eqtri | |- ( B i^i suc A ) = ( ( B i^i { A } ) u. ( B i^i A ) ) |
| 6 | snssi | |- ( A e. B -> { A } C_ B ) |
|
| 7 | sseqin2 | |- ( { A } C_ B <-> ( B i^i { A } ) = { A } ) |
|
| 8 | 6 7 | sylib | |- ( A e. B -> ( B i^i { A } ) = { A } ) |
| 9 | 8 | uneq1d | |- ( A e. B -> ( ( B i^i { A } ) u. ( B i^i A ) ) = ( { A } u. ( B i^i A ) ) ) |
| 10 | 5 9 | eqtrid | |- ( A e. B -> ( B i^i suc A ) = ( { A } u. ( B i^i A ) ) ) |