This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by NM, 7-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abstri | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1 | a1i | |- ( ( A e. CC /\ B e. CC ) -> 2 e. RR ) |
| 3 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | 4 | cjcld | |- ( ( A e. CC /\ B e. CC ) -> ( * ` B ) e. CC ) |
| 6 | 3 5 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( * ` B ) ) e. CC ) |
| 7 | 6 | recld | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) e. RR ) |
| 8 | 2 7 | remulcld | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) e. RR ) |
| 9 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 10 | 3 9 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` A ) e. RR ) |
| 11 | abscl | |- ( B e. CC -> ( abs ` B ) e. RR ) |
|
| 12 | 4 11 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` B ) e. RR ) |
| 13 | 10 12 | remulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` B ) ) e. RR ) |
| 14 | 2 13 | remulcld | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) e. RR ) |
| 15 | 10 | resqcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) ^ 2 ) e. RR ) |
| 16 | 12 | resqcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` B ) ^ 2 ) e. RR ) |
| 17 | 15 16 | readdcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) e. RR ) |
| 18 | releabs | |- ( ( A x. ( * ` B ) ) e. CC -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( abs ` ( A x. ( * ` B ) ) ) ) |
|
| 19 | 6 18 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( abs ` ( A x. ( * ` B ) ) ) ) |
| 20 | absmul | |- ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) ) |
|
| 21 | 3 5 20 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) ) |
| 22 | abscj | |- ( B e. CC -> ( abs ` ( * ` B ) ) = ( abs ` B ) ) |
|
| 23 | 4 22 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( * ` B ) ) = ( abs ` B ) ) |
| 24 | 23 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |
| 25 | 21 24 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. ( * ` B ) ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |
| 26 | 19 25 | breqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A x. ( * ` B ) ) ) <_ ( ( abs ` A ) x. ( abs ` B ) ) ) |
| 27 | 2rp | |- 2 e. RR+ |
|
| 28 | 27 | a1i | |- ( ( A e. CC /\ B e. CC ) -> 2 e. RR+ ) |
| 29 | 7 13 28 | lemul2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( Re ` ( A x. ( * ` B ) ) ) <_ ( ( abs ` A ) x. ( abs ` B ) ) <-> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) <_ ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
| 30 | 26 29 | mpbid | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) <_ ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) |
| 31 | 8 14 17 30 | leadd2dd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) <_ ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
| 32 | sqabsadd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) ) |
|
| 33 | 10 | recnd | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` A ) e. CC ) |
| 34 | 12 | recnd | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` B ) e. CC ) |
| 35 | binom2 | |- ( ( ( abs ` A ) e. CC /\ ( abs ` B ) e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) ) |
| 37 | 15 | recnd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) ^ 2 ) e. CC ) |
| 38 | 14 | recnd | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) e. CC ) |
| 39 | 16 | recnd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` B ) ^ 2 ) e. CC ) |
| 40 | 37 38 39 | add32d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) + ( ( abs ` B ) ^ 2 ) ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
| 41 | 36 40 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( ( abs ` A ) x. ( abs ` B ) ) ) ) ) |
| 42 | 31 32 41 | 3brtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) <_ ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) ) |
| 43 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 44 | abscl | |- ( ( A + B ) e. CC -> ( abs ` ( A + B ) ) e. RR ) |
|
| 45 | 43 44 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) e. RR ) |
| 46 | 10 12 | readdcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) + ( abs ` B ) ) e. RR ) |
| 47 | absge0 | |- ( ( A + B ) e. CC -> 0 <_ ( abs ` ( A + B ) ) ) |
|
| 48 | 43 47 | syl | |- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` ( A + B ) ) ) |
| 49 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 50 | 3 49 | syl | |- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` A ) ) |
| 51 | absge0 | |- ( B e. CC -> 0 <_ ( abs ` B ) ) |
|
| 52 | 4 51 | syl | |- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( abs ` B ) ) |
| 53 | 10 12 50 52 | addge0d | |- ( ( A e. CC /\ B e. CC ) -> 0 <_ ( ( abs ` A ) + ( abs ` B ) ) ) |
| 54 | 45 46 48 53 | le2sqd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) <-> ( ( abs ` ( A + B ) ) ^ 2 ) <_ ( ( ( abs ` A ) + ( abs ` B ) ) ^ 2 ) ) ) |
| 55 | 42 54 | mpbird | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |