This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square of absolute value of sum. Proposition 10-3.7(g) of Gleason p. 133. (Contributed by NM, 21-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqabsadd | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjadd | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) ) ) |
|
| 2 | 1 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( * ` ( A + B ) ) ) = ( ( A + B ) x. ( ( * ` A ) + ( * ` B ) ) ) ) |
| 3 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 4 | cjcl | |- ( B e. CC -> ( * ` B ) e. CC ) |
|
| 5 | 3 4 | anim12i | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) ) |
| 6 | muladd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) ) -> ( ( A + B ) x. ( ( * ` A ) + ( * ` B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) + ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) |
|
| 7 | 5 6 | mpdan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( ( * ` A ) + ( * ` B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) + ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) |
| 8 | 2 7 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( * ` ( A + B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) + ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) |
| 9 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 10 | absvalsq | |- ( ( A + B ) e. CC -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( A + B ) x. ( * ` ( A + B ) ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( A + B ) x. ( * ` ( A + B ) ) ) ) |
| 12 | absvalsq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
|
| 13 | absvalsq | |- ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( B x. ( * ` B ) ) ) |
|
| 14 | mulcom | |- ( ( B e. CC /\ ( * ` B ) e. CC ) -> ( B x. ( * ` B ) ) = ( ( * ` B ) x. B ) ) |
|
| 15 | 4 14 | mpdan | |- ( B e. CC -> ( B x. ( * ` B ) ) = ( ( * ` B ) x. B ) ) |
| 16 | 13 15 | eqtrd | |- ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( ( * ` B ) x. B ) ) |
| 17 | 12 16 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) ) |
| 18 | mulcl | |- ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( A x. ( * ` B ) ) e. CC ) |
|
| 19 | 4 18 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( * ` B ) ) e. CC ) |
| 20 | 19 | addcjd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( * ` B ) ) + ( * ` ( A x. ( * ` B ) ) ) ) = ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) |
| 21 | cjmul | |- ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. ( * ` ( * ` B ) ) ) ) |
|
| 22 | 4 21 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. ( * ` ( * ` B ) ) ) ) |
| 23 | cjcj | |- ( B e. CC -> ( * ` ( * ` B ) ) = B ) |
|
| 24 | 23 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( * ` B ) ) = B ) |
| 25 | 24 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) x. ( * ` ( * ` B ) ) ) = ( ( * ` A ) x. B ) ) |
| 26 | 22 25 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. B ) ) |
| 27 | 26 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( * ` B ) ) + ( * ` ( A x. ( * ` B ) ) ) ) = ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) |
| 28 | 20 27 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) = ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) |
| 29 | 17 28 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) + ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) |
| 30 | 8 11 29 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) ) |