This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by NM, 7-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abstri | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℝ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | 4 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 6 | 3 5 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ∈ ℂ ) |
| 7 | 6 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 8 | 2 7 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
| 9 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 3 9 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 | abscl | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) | |
| 12 | 4 11 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 13 | 10 12 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 14 | 2 13 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 15 | 10 | resqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 16 | 12 | resqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ) |
| 17 | 15 16 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ ℝ ) |
| 18 | releabs | ⊢ ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ∈ ℂ → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) | |
| 19 | 6 18 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 20 | absmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) ) | |
| 21 | 3 5 20 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) ) |
| 22 | abscj | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐵 ) ) = ( abs ‘ 𝐵 ) ) | |
| 23 | 4 22 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ 𝐵 ) ) = ( abs ‘ 𝐵 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 25 | 21 24 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 26 | 19 25 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| 27 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 28 | 27 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℝ+ ) |
| 29 | 7 13 28 | lemul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ↔ ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ≤ ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 30 | 26 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ≤ ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) |
| 31 | 8 14 17 30 | leadd2dd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 32 | sqabsadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) ) ) ) | |
| 33 | 10 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 34 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 35 | binom2 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐵 ) ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 37 | 15 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 38 | 14 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 39 | 16 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 40 | 37 38 39 | add32d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) + ( 2 · ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) ) ) |
| 42 | 31 32 41 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ≤ ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) ) |
| 43 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 44 | abscl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
| 46 | 10 12 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ∈ ℝ ) |
| 47 | absge0 | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → 0 ≤ ( abs ‘ ( 𝐴 + 𝐵 ) ) ) | |
| 48 | 43 47 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ ( 𝐴 + 𝐵 ) ) ) |
| 49 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 50 | 3 49 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 51 | absge0 | ⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( abs ‘ 𝐵 ) ) | |
| 52 | 4 51 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 53 | 10 12 50 52 | addge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 0 ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| 54 | 45 46 48 53 | le2sqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↔ ( ( abs ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) ≤ ( ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 55 | 42 54 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |