This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs3dif | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npncan | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - C ) + ( C - B ) ) = ( A - B ) ) |
|
| 2 | 1 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) + ( C - B ) ) = ( A - B ) ) |
| 3 | 2 | fveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( ( A - C ) + ( C - B ) ) ) = ( abs ` ( A - B ) ) ) |
| 4 | subcl | |- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
|
| 5 | 4 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
| 6 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 7 | 6 | ancoms | |- ( ( B e. CC /\ C e. CC ) -> ( C - B ) e. CC ) |
| 8 | 7 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C - B ) e. CC ) |
| 9 | abstri | |- ( ( ( A - C ) e. CC /\ ( C - B ) e. CC ) -> ( abs ` ( ( A - C ) + ( C - B ) ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
|
| 10 | 5 8 9 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( ( A - C ) + ( C - B ) ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |
| 11 | 3 10 | eqbrtrrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` ( A - C ) ) + ( abs ` ( C - B ) ) ) ) |