This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of Gleason p. 133. (Contributed by NM, 28-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscj | |- ( A e. CC -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 2 | absval | |- ( ( * ` A ) e. CC -> ( abs ` ( * ` A ) ) = ( sqrt ` ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> ( abs ` ( * ` A ) ) = ( sqrt ` ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) ) |
| 4 | mulcom | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
|
| 5 | 1 4 | mpdan | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
| 6 | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
|
| 7 | 6 | oveq2d | |- ( A e. CC -> ( ( * ` A ) x. ( * ` ( * ` A ) ) ) = ( ( * ` A ) x. A ) ) |
| 8 | 5 7 | eqtr4d | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) |
| 9 | 8 | fveq2d | |- ( A e. CC -> ( sqrt ` ( A x. ( * ` A ) ) ) = ( sqrt ` ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) ) |
| 10 | 3 9 | eqtr4d | |- ( A e. CC -> ( abs ` ( * ` A ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 11 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 12 | 10 11 | eqtr4d | |- ( A e. CC -> ( abs ` ( * ` A ) ) = ( abs ` A ) ) |