This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nprm | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
|
| 2 | 1 | adantr | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. ZZ ) |
| 3 | 2 | zred | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
| 4 | eluz2gt1 | |- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
|
| 5 | 4 | adantl | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 1 < B ) |
| 6 | eluzelz | |- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
|
| 7 | 6 | adantl | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ZZ ) |
| 8 | 7 | zred | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. RR ) |
| 9 | eluz2nn | |- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
|
| 10 | 9 | adantr | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. NN ) |
| 11 | 10 | nngt0d | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 0 < A ) |
| 12 | ltmulgt11 | |- ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
|
| 13 | 3 8 11 12 | syl3anc | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( 1 < B <-> A < ( A x. B ) ) ) |
| 14 | 5 13 | mpbid | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A < ( A x. B ) ) |
| 15 | 3 14 | ltned | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A =/= ( A x. B ) ) |
| 16 | dvdsmul1 | |- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
|
| 17 | 1 6 16 | syl2an | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A || ( A x. B ) ) |
| 18 | isprm4 | |- ( ( A x. B ) e. Prime <-> ( ( A x. B ) e. ( ZZ>= ` 2 ) /\ A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) ) ) |
|
| 19 | 18 | simprbi | |- ( ( A x. B ) e. Prime -> A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) ) |
| 20 | breq1 | |- ( x = A -> ( x || ( A x. B ) <-> A || ( A x. B ) ) ) |
|
| 21 | eqeq1 | |- ( x = A -> ( x = ( A x. B ) <-> A = ( A x. B ) ) ) |
|
| 22 | 20 21 | imbi12d | |- ( x = A -> ( ( x || ( A x. B ) -> x = ( A x. B ) ) <-> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 23 | 22 | rspcv | |- ( A e. ( ZZ>= ` 2 ) -> ( A. x e. ( ZZ>= ` 2 ) ( x || ( A x. B ) -> x = ( A x. B ) ) -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 24 | 19 23 | syl5 | |- ( A e. ( ZZ>= ` 2 ) -> ( ( A x. B ) e. Prime -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 25 | 24 | adantr | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A x. B ) e. Prime -> ( A || ( A x. B ) -> A = ( A x. B ) ) ) ) |
| 26 | 17 25 | mpid | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A x. B ) e. Prime -> A = ( A x. B ) ) ) |
| 27 | 26 | necon3ad | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A =/= ( A x. B ) -> -. ( A x. B ) e. Prime ) ) |
| 28 | 15 27 | mpd | |- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. ( A x. B ) e. Prime ) |