This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1 . (Contributed by AV, 4-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zle0orge1 | |- ( Z e. ZZ -> ( Z <_ 0 \/ 1 <_ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | |- ( Z e. ZZ <-> ( Z e. RR /\ ( Z e. NN \/ -u Z e. NN0 ) ) ) |
|
| 2 | nnge1 | |- ( Z e. NN -> 1 <_ Z ) |
|
| 3 | 2 | a1i | |- ( Z e. RR -> ( Z e. NN -> 1 <_ Z ) ) |
| 4 | elnn0z | |- ( -u Z e. NN0 <-> ( -u Z e. ZZ /\ 0 <_ -u Z ) ) |
|
| 5 | le0neg1 | |- ( Z e. RR -> ( Z <_ 0 <-> 0 <_ -u Z ) ) |
|
| 6 | 5 | biimprd | |- ( Z e. RR -> ( 0 <_ -u Z -> Z <_ 0 ) ) |
| 7 | 6 | adantld | |- ( Z e. RR -> ( ( -u Z e. ZZ /\ 0 <_ -u Z ) -> Z <_ 0 ) ) |
| 8 | 4 7 | biimtrid | |- ( Z e. RR -> ( -u Z e. NN0 -> Z <_ 0 ) ) |
| 9 | 3 8 | orim12d | |- ( Z e. RR -> ( ( Z e. NN \/ -u Z e. NN0 ) -> ( 1 <_ Z \/ Z <_ 0 ) ) ) |
| 10 | 9 | imp | |- ( ( Z e. RR /\ ( Z e. NN \/ -u Z e. NN0 ) ) -> ( 1 <_ Z \/ Z <_ 0 ) ) |
| 11 | 10 | orcomd | |- ( ( Z e. RR /\ ( Z e. NN \/ -u Z e. NN0 ) ) -> ( Z <_ 0 \/ 1 <_ Z ) ) |
| 12 | 1 11 | sylbi | |- ( Z e. ZZ -> ( Z <_ 0 \/ 1 <_ Z ) ) |