This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | |- ( ph -> A e. RR ) |
|
| mul2lt0.2 | |- ( ph -> B e. RR ) |
||
| Assertion | mul2lt0bi | |- ( ph -> ( ( A x. B ) < 0 <-> ( ( A < 0 /\ 0 < B ) \/ ( 0 < A /\ B < 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | |- ( ph -> A e. RR ) |
|
| 2 | mul2lt0.2 | |- ( ph -> B e. RR ) |
|
| 3 | 1 2 | remulcld | |- ( ph -> ( A x. B ) e. RR ) |
| 4 | 0red | |- ( ph -> 0 e. RR ) |
|
| 5 | 3 4 | ltnled | |- ( ph -> ( ( A x. B ) < 0 <-> -. 0 <_ ( A x. B ) ) ) |
| 6 | 1 | adantr | |- ( ( ph /\ ( 0 <_ A /\ 0 <_ B ) ) -> A e. RR ) |
| 7 | 2 | adantr | |- ( ( ph /\ ( 0 <_ A /\ 0 <_ B ) ) -> B e. RR ) |
| 8 | simprl | |- ( ( ph /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ A ) |
|
| 9 | simprr | |- ( ( ph /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ B ) |
|
| 10 | 6 7 8 9 | mulge0d | |- ( ( ph /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
| 11 | 10 | ex | |- ( ph -> ( ( 0 <_ A /\ 0 <_ B ) -> 0 <_ ( A x. B ) ) ) |
| 12 | 11 | con3d | |- ( ph -> ( -. 0 <_ ( A x. B ) -> -. ( 0 <_ A /\ 0 <_ B ) ) ) |
| 13 | 5 12 | sylbid | |- ( ph -> ( ( A x. B ) < 0 -> -. ( 0 <_ A /\ 0 <_ B ) ) ) |
| 14 | ianor | |- ( -. ( 0 <_ A /\ 0 <_ B ) <-> ( -. 0 <_ A \/ -. 0 <_ B ) ) |
|
| 15 | 13 14 | imbitrdi | |- ( ph -> ( ( A x. B ) < 0 -> ( -. 0 <_ A \/ -. 0 <_ B ) ) ) |
| 16 | 1 4 | ltnled | |- ( ph -> ( A < 0 <-> -. 0 <_ A ) ) |
| 17 | 2 4 | ltnled | |- ( ph -> ( B < 0 <-> -. 0 <_ B ) ) |
| 18 | 16 17 | orbi12d | |- ( ph -> ( ( A < 0 \/ B < 0 ) <-> ( -. 0 <_ A \/ -. 0 <_ B ) ) ) |
| 19 | 15 18 | sylibrd | |- ( ph -> ( ( A x. B ) < 0 -> ( A < 0 \/ B < 0 ) ) ) |
| 20 | 19 | imp | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( A < 0 \/ B < 0 ) ) |
| 21 | simpr | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < 0 ) |
|
| 22 | 1 | adantr | |- ( ( ph /\ ( A x. B ) < 0 ) -> A e. RR ) |
| 23 | 2 | adantr | |- ( ( ph /\ ( A x. B ) < 0 ) -> B e. RR ) |
| 24 | simpr | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( A x. B ) < 0 ) |
|
| 25 | 22 23 24 | mul2lt0llt0 | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 < B ) |
| 26 | 21 25 | jca | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A < 0 /\ 0 < B ) ) |
| 27 | 26 | ex | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( A < 0 -> ( A < 0 /\ 0 < B ) ) ) |
| 28 | 22 23 24 | mul2lt0rlt0 | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ B < 0 ) -> 0 < A ) |
| 29 | simpr | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ B < 0 ) -> B < 0 ) |
|
| 30 | 28 29 | jca | |- ( ( ( ph /\ ( A x. B ) < 0 ) /\ B < 0 ) -> ( 0 < A /\ B < 0 ) ) |
| 31 | 30 | ex | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( B < 0 -> ( 0 < A /\ B < 0 ) ) ) |
| 32 | 27 31 | orim12d | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( ( A < 0 \/ B < 0 ) -> ( ( A < 0 /\ 0 < B ) \/ ( 0 < A /\ B < 0 ) ) ) ) |
| 33 | 20 32 | mpd | |- ( ( ph /\ ( A x. B ) < 0 ) -> ( ( A < 0 /\ 0 < B ) \/ ( 0 < A /\ B < 0 ) ) ) |
| 34 | 1 | adantr | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> A e. RR ) |
| 35 | 0red | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> 0 e. RR ) |
|
| 36 | 2 | adantr | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> B e. RR ) |
| 37 | simprr | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> 0 < B ) |
|
| 38 | 36 37 | elrpd | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> B e. RR+ ) |
| 39 | simprl | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> A < 0 ) |
|
| 40 | 34 35 38 39 | ltmul1dd | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> ( A x. B ) < ( 0 x. B ) ) |
| 41 | 36 | recnd | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> B e. CC ) |
| 42 | 41 | mul02d | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> ( 0 x. B ) = 0 ) |
| 43 | 40 42 | breqtrd | |- ( ( ph /\ ( A < 0 /\ 0 < B ) ) -> ( A x. B ) < 0 ) |
| 44 | 2 | adantr | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> B e. RR ) |
| 45 | 0red | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> 0 e. RR ) |
|
| 46 | 1 | adantr | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> A e. RR ) |
| 47 | simprl | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> 0 < A ) |
|
| 48 | 46 47 | elrpd | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> A e. RR+ ) |
| 49 | simprr | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> B < 0 ) |
|
| 50 | 44 45 48 49 | ltmul2dd | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> ( A x. B ) < ( A x. 0 ) ) |
| 51 | 46 | recnd | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> A e. CC ) |
| 52 | 51 | mul01d | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> ( A x. 0 ) = 0 ) |
| 53 | 50 52 | breqtrd | |- ( ( ph /\ ( 0 < A /\ B < 0 ) ) -> ( A x. B ) < 0 ) |
| 54 | 43 53 | jaodan | |- ( ( ph /\ ( ( A < 0 /\ 0 < B ) \/ ( 0 < A /\ B < 0 ) ) ) -> ( A x. B ) < 0 ) |
| 55 | 33 54 | impbida | |- ( ph -> ( ( A x. B ) < 0 <-> ( ( A < 0 /\ 0 < B ) \/ ( 0 < A /\ B < 0 ) ) ) ) |