This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping X --> Y , where X is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence f ( n ) converging to x , its image under F converges to F ( x ) . (Contributed by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stccnp.1 | |- ( ph -> J e. 1stc ) |
|
| 1stccnp.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| 1stccnp.3 | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| 1stccn.7 | |- ( ph -> F : X --> Y ) |
||
| Assertion | 1stccn | |- ( ph -> ( F e. ( J Cn K ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stccnp.1 | |- ( ph -> J e. 1stc ) |
|
| 2 | 1stccnp.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | 1stccnp.3 | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 4 | 1stccn.7 | |- ( ph -> F : X --> Y ) |
|
| 5 | cncnp | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) |
|
| 6 | 2 3 5 | syl2anc | |- ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) |
| 7 | 4 6 | mpbirand | |- ( ph -> ( F e. ( J Cn K ) <-> A. x e. X F e. ( ( J CnP K ) ` x ) ) ) |
| 8 | 4 | adantr | |- ( ( ph /\ x e. X ) -> F : X --> Y ) |
| 9 | 1 | adantr | |- ( ( ph /\ x e. X ) -> J e. 1stc ) |
| 10 | 2 | adantr | |- ( ( ph /\ x e. X ) -> J e. ( TopOn ` X ) ) |
| 11 | 3 | adantr | |- ( ( ph /\ x e. X ) -> K e. ( TopOn ` Y ) ) |
| 12 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 13 | 9 10 11 12 | 1stccnp | |- ( ( ph /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| 14 | 8 13 | mpbirand | |- ( ( ph /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 15 | 14 | ralbidva | |- ( ph -> ( A. x e. X F e. ( ( J CnP K ) ` x ) <-> A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 16 | ralcom4 | |- ( A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) |
|
| 17 | impexp | |- ( ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
|
| 18 | 17 | ralbii | |- ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x e. X ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 19 | r19.21v | |- ( A. x e. X ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
|
| 20 | 18 19 | bitri | |- ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 21 | df-ral | |- ( A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
|
| 22 | lmcl | |- ( ( J e. ( TopOn ` X ) /\ f ( ~~>t ` J ) x ) -> x e. X ) |
|
| 23 | 2 22 | sylan | |- ( ( ph /\ f ( ~~>t ` J ) x ) -> x e. X ) |
| 24 | 23 | ex | |- ( ph -> ( f ( ~~>t ` J ) x -> x e. X ) ) |
| 25 | 24 | pm4.71rd | |- ( ph -> ( f ( ~~>t ` J ) x <-> ( x e. X /\ f ( ~~>t ` J ) x ) ) ) |
| 26 | 25 | imbi1d | |- ( ph -> ( ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( ( x e. X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 27 | impexp | |- ( ( ( x e. X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
|
| 28 | 26 27 | bitr2di | |- ( ph -> ( ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 29 | 28 | albidv | |- ( ph -> ( A. x ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 30 | 21 29 | bitrid | |- ( ph -> ( A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) |
| 31 | 30 | imbi2d | |- ( ph -> ( ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| 32 | 20 31 | bitrid | |- ( ph -> ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| 33 | 32 | albidv | |- ( ph -> ( A. f A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| 34 | 16 33 | bitrid | |- ( ph -> ( A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |
| 35 | 7 15 34 | 3bitrd | |- ( ph -> ( F e. ( J Cn K ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |