This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1st2ndprf.t | |- T = ( D Xc. E ) |
|
| 1st2ndprf.f | |- ( ph -> F e. ( C Func T ) ) |
||
| 1st2ndprf.d | |- ( ph -> D e. Cat ) |
||
| 1st2ndprf.e | |- ( ph -> E e. Cat ) |
||
| Assertion | 1st2ndprf | |- ( ph -> F = ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2ndprf.t | |- T = ( D Xc. E ) |
|
| 2 | 1st2ndprf.f | |- ( ph -> F e. ( C Func T ) ) |
|
| 3 | 1st2ndprf.d | |- ( ph -> D e. Cat ) |
|
| 4 | 1st2ndprf.e | |- ( ph -> E e. Cat ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 7 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 8 | 1 6 7 | xpcbas | |- ( ( Base ` D ) X. ( Base ` E ) ) = ( Base ` T ) |
| 9 | relfunc | |- Rel ( C Func T ) |
|
| 10 | 1st2ndbr | |- ( ( Rel ( C Func T ) /\ F e. ( C Func T ) ) -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
|
| 11 | 9 2 10 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
| 12 | 5 8 11 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 13 | 12 | feqmptd | |- ( ph -> ( 1st ` F ) = ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) ) |
| 14 | 12 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 15 | 1st2nd2 | |- ( ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) -> ( ( 1st ` F ) ` x ) = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
| 17 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func T ) ) |
| 18 | eqid | |- ( D 1stF E ) = ( D 1stF E ) |
|
| 19 | 1 3 4 18 | 1stfcl | |- ( ph -> ( D 1stF E ) e. ( T Func D ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( D 1stF E ) e. ( T Func D ) ) |
| 21 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 22 | 5 17 20 21 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) = ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 23 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
| 24 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 25 | 4 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 26 | 1 8 23 24 25 18 14 | 1stf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` F ) ` x ) ) = ( 1st ` ( ( 1st ` F ) ` x ) ) ) |
| 27 | 22 26 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) = ( 1st ` ( ( 1st ` F ) ` x ) ) ) |
| 28 | eqid | |- ( D 2ndF E ) = ( D 2ndF E ) |
|
| 29 | 1 3 4 28 | 2ndfcl | |- ( ph -> ( D 2ndF E ) e. ( T Func E ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( D 2ndF E ) e. ( T Func E ) ) |
| 31 | 5 17 30 21 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) = ( ( 1st ` ( D 2ndF E ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 32 | 1 8 23 24 25 28 14 | 2ndf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 2ndF E ) ) ` ( ( 1st ` F ) ` x ) ) = ( 2nd ` ( ( 1st ` F ) ` x ) ) ) |
| 33 | 31 32 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) = ( 2nd ` ( ( 1st ` F ) ` x ) ) ) |
| 34 | 27 33 | opeq12d | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
| 35 | 16 34 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) = <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) |
| 36 | 35 | mpteq2dva | |- ( ph -> ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) ) |
| 37 | 13 36 | eqtrd | |- ( ph -> ( 1st ` F ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) ) |
| 38 | 5 11 | funcfn2 | |- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 39 | fnov | |- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
|
| 40 | 38 39 | sylib | |- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 41 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 42 | 11 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
| 43 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 44 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 45 | 5 41 23 42 43 44 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) |
| 46 | 45 | feqmptd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 47 | 1 23 | relxpchom | |- Rel ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) |
| 48 | 45 | ffvelcdmda | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) |
| 49 | 1st2nd | |- ( ( Rel ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) /\ ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
|
| 50 | 47 48 49 | sylancr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
| 51 | 2 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> F e. ( C Func T ) ) |
| 52 | 19 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( D 1stF E ) e. ( T Func D ) ) |
| 53 | 43 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 54 | 44 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 55 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 56 | 5 51 52 53 54 41 55 | cofu2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 57 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. Cat ) |
| 58 | 4 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E e. Cat ) |
| 59 | 14 | adantrr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 60 | 12 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 61 | 60 | adantrl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 62 | 1 8 23 57 58 18 59 61 | 1stf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) = ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 63 | 62 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) = ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 64 | 63 | fveq1d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 65 | 48 | fvresd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 66 | 56 64 65 | 3eqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) = ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 67 | 29 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( D 2ndF E ) e. ( T Func E ) ) |
| 68 | 5 51 67 53 54 41 55 | cofu2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 69 | 1 8 23 57 58 28 59 61 | 2ndf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) = ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) = ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 71 | 70 | fveq1d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 72 | 48 | fvresd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 73 | 68 71 72 | 3eqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) = ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 74 | 66 73 | opeq12d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
| 75 | 50 74 | eqtr4d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) |
| 76 | 75 | mpteq2dva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 77 | 46 76 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 78 | 77 | 3impb | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 79 | 78 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) ) |
| 80 | 40 79 | eqtrd | |- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) ) |
| 81 | 37 80 | opeq12d | |- ( ph -> <. ( 1st ` F ) , ( 2nd ` F ) >. = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) >. ) |
| 82 | 1st2nd | |- ( ( Rel ( C Func T ) /\ F e. ( C Func T ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 83 | 9 2 82 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 84 | eqid | |- ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) = ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) |
|
| 85 | 2 19 | cofucl | |- ( ph -> ( ( D 1stF E ) o.func F ) e. ( C Func D ) ) |
| 86 | 2 29 | cofucl | |- ( ph -> ( ( D 2ndF E ) o.func F ) e. ( C Func E ) ) |
| 87 | 84 5 41 85 86 | prfval | |- ( ph -> ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) >. ) |
| 88 | 81 83 87 | 3eqtr4d | |- ( ph -> F = ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) ) |