This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relxpchom.t | |- T = ( C Xc. D ) |
|
| relxpchom.k | |- K = ( Hom ` T ) |
||
| Assertion | relxpchom | |- Rel ( X K Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxpchom.t | |- T = ( C Xc. D ) |
|
| 2 | relxpchom.k | |- K = ( Hom ` T ) |
|
| 3 | xpss | |- ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) |
|
| 4 | 3 | rgen2w | |- A. u e. ( Base ` T ) A. v e. ( Base ` T ) ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) |
| 5 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | 1 5 6 7 2 | xpchomfval | |- K = ( u e. ( Base ` T ) , v e. ( Base ` T ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 9 | 8 | ovmptss | |- ( A. u e. ( Base ` T ) A. v e. ( Base ` T ) ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) C_ ( _V X. _V ) -> ( X K Y ) C_ ( _V X. _V ) ) |
| 10 | 4 9 | ax-mp | |- ( X K Y ) C_ ( _V X. _V ) |
| 11 | df-rel | |- ( Rel ( X K Y ) <-> ( X K Y ) C_ ( _V X. _V ) ) |
|
| 12 | 10 11 | mpbir | |- Rel ( X K Y ) |