This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1egrvtxdg1.a | |- ( ph -> A e. X ) |
||
| 1egrvtxdg1.b | |- ( ph -> B e. V ) |
||
| 1egrvtxdg1.c | |- ( ph -> C e. V ) |
||
| 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
||
| 1egrvtxdg0.d | |- ( ph -> D e. V ) |
||
| 1egrvtxdg0.n | |- ( ph -> C =/= D ) |
||
| 1egrvtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
||
| Assertion | 1egrvtxdg0 | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1egrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 3 | 1egrvtxdg1.b | |- ( ph -> B e. V ) |
|
| 4 | 1egrvtxdg1.c | |- ( ph -> C e. V ) |
|
| 5 | 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
|
| 6 | 1egrvtxdg0.d | |- ( ph -> D e. V ) |
|
| 7 | 1egrvtxdg0.n | |- ( ph -> C =/= D ) |
|
| 8 | 1egrvtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
|
| 9 | 1 | adantl | |- ( ( B = D /\ ph ) -> ( Vtx ` G ) = V ) |
| 10 | 2 | adantl | |- ( ( B = D /\ ph ) -> A e. X ) |
| 11 | 3 | adantl | |- ( ( B = D /\ ph ) -> B e. V ) |
| 12 | 8 | adantl | |- ( ( B = D /\ ph ) -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
| 13 | preq2 | |- ( D = B -> { B , D } = { B , B } ) |
|
| 14 | 13 | eqcoms | |- ( B = D -> { B , D } = { B , B } ) |
| 15 | dfsn2 | |- { B } = { B , B } |
|
| 16 | 14 15 | eqtr4di | |- ( B = D -> { B , D } = { B } ) |
| 17 | 16 | adantr | |- ( ( B = D /\ ph ) -> { B , D } = { B } ) |
| 18 | 17 | opeq2d | |- ( ( B = D /\ ph ) -> <. A , { B , D } >. = <. A , { B } >. ) |
| 19 | 18 | sneqd | |- ( ( B = D /\ ph ) -> { <. A , { B , D } >. } = { <. A , { B } >. } ) |
| 20 | 12 19 | eqtrd | |- ( ( B = D /\ ph ) -> ( iEdg ` G ) = { <. A , { B } >. } ) |
| 21 | 5 | necomd | |- ( ph -> C =/= B ) |
| 22 | 4 21 | jca | |- ( ph -> ( C e. V /\ C =/= B ) ) |
| 23 | eldifsn | |- ( C e. ( V \ { B } ) <-> ( C e. V /\ C =/= B ) ) |
|
| 24 | 22 23 | sylibr | |- ( ph -> C e. ( V \ { B } ) ) |
| 25 | 24 | adantl | |- ( ( B = D /\ ph ) -> C e. ( V \ { B } ) ) |
| 26 | 9 10 11 20 25 | 1loopgrvd0 | |- ( ( B = D /\ ph ) -> ( ( VtxDeg ` G ) ` C ) = 0 ) |
| 27 | 26 | ex | |- ( B = D -> ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) ) |
| 28 | necom | |- ( B =/= C <-> C =/= B ) |
|
| 29 | df-ne | |- ( C =/= B <-> -. C = B ) |
|
| 30 | 28 29 | sylbb | |- ( B =/= C -> -. C = B ) |
| 31 | 5 30 | syl | |- ( ph -> -. C = B ) |
| 32 | 7 | neneqd | |- ( ph -> -. C = D ) |
| 33 | 31 32 | jca | |- ( ph -> ( -. C = B /\ -. C = D ) ) |
| 34 | 33 | adantl | |- ( ( B =/= D /\ ph ) -> ( -. C = B /\ -. C = D ) ) |
| 35 | ioran | |- ( -. ( C = B \/ C = D ) <-> ( -. C = B /\ -. C = D ) ) |
|
| 36 | 34 35 | sylibr | |- ( ( B =/= D /\ ph ) -> -. ( C = B \/ C = D ) ) |
| 37 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 38 | 8 | rneqd | |- ( ph -> ran ( iEdg ` G ) = ran { <. A , { B , D } >. } ) |
| 39 | rnsnopg | |- ( A e. X -> ran { <. A , { B , D } >. } = { { B , D } } ) |
|
| 40 | 2 39 | syl | |- ( ph -> ran { <. A , { B , D } >. } = { { B , D } } ) |
| 41 | 38 40 | eqtrd | |- ( ph -> ran ( iEdg ` G ) = { { B , D } } ) |
| 42 | 37 41 | eqtrid | |- ( ph -> ( Edg ` G ) = { { B , D } } ) |
| 43 | 42 | adantl | |- ( ( B =/= D /\ ph ) -> ( Edg ` G ) = { { B , D } } ) |
| 44 | 43 | rexeqdv | |- ( ( B =/= D /\ ph ) -> ( E. e e. ( Edg ` G ) C e. e <-> E. e e. { { B , D } } C e. e ) ) |
| 45 | prex | |- { B , D } e. _V |
|
| 46 | eleq2 | |- ( e = { B , D } -> ( C e. e <-> C e. { B , D } ) ) |
|
| 47 | 46 | rexsng | |- ( { B , D } e. _V -> ( E. e e. { { B , D } } C e. e <-> C e. { B , D } ) ) |
| 48 | 45 47 | mp1i | |- ( ( B =/= D /\ ph ) -> ( E. e e. { { B , D } } C e. e <-> C e. { B , D } ) ) |
| 49 | elprg | |- ( C e. V -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
|
| 50 | 4 49 | syl | |- ( ph -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
| 51 | 50 | adantl | |- ( ( B =/= D /\ ph ) -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
| 52 | 44 48 51 | 3bitrd | |- ( ( B =/= D /\ ph ) -> ( E. e e. ( Edg ` G ) C e. e <-> ( C = B \/ C = D ) ) ) |
| 53 | 36 52 | mtbird | |- ( ( B =/= D /\ ph ) -> -. E. e e. ( Edg ` G ) C e. e ) |
| 54 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 55 | 2 | adantl | |- ( ( B =/= D /\ ph ) -> A e. X ) |
| 56 | 3 1 | eleqtrrd | |- ( ph -> B e. ( Vtx ` G ) ) |
| 57 | 56 | adantl | |- ( ( B =/= D /\ ph ) -> B e. ( Vtx ` G ) ) |
| 58 | 6 1 | eleqtrrd | |- ( ph -> D e. ( Vtx ` G ) ) |
| 59 | 58 | adantl | |- ( ( B =/= D /\ ph ) -> D e. ( Vtx ` G ) ) |
| 60 | 8 | adantl | |- ( ( B =/= D /\ ph ) -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
| 61 | simpl | |- ( ( B =/= D /\ ph ) -> B =/= D ) |
|
| 62 | 54 55 57 59 60 61 | usgr1e | |- ( ( B =/= D /\ ph ) -> G e. USGraph ) |
| 63 | 4 1 | eleqtrrd | |- ( ph -> C e. ( Vtx ` G ) ) |
| 64 | 63 | adantl | |- ( ( B =/= D /\ ph ) -> C e. ( Vtx ` G ) ) |
| 65 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 66 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 67 | 54 65 66 | vtxdusgr0edgnel | |- ( ( G e. USGraph /\ C e. ( Vtx ` G ) ) -> ( ( ( VtxDeg ` G ) ` C ) = 0 <-> -. E. e e. ( Edg ` G ) C e. e ) ) |
| 68 | 62 64 67 | syl2anc | |- ( ( B =/= D /\ ph ) -> ( ( ( VtxDeg ` G ) ` C ) = 0 <-> -. E. e e. ( Edg ` G ) C e. e ) ) |
| 69 | 53 68 | mpbird | |- ( ( B =/= D /\ ph ) -> ( ( VtxDeg ` G ) ` C ) = 0 ) |
| 70 | 69 | ex | |- ( B =/= D -> ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) ) |
| 71 | 27 70 | pm2.61ine | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) |