This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for p1evtxdeq and p1evtxdp1 . (Contributed by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p1evtxdeq.v | |- V = ( Vtx ` G ) |
|
| p1evtxdeq.i | |- I = ( iEdg ` G ) |
||
| p1evtxdeq.f | |- ( ph -> Fun I ) |
||
| p1evtxdeq.fv | |- ( ph -> ( Vtx ` F ) = V ) |
||
| p1evtxdeq.fi | |- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
||
| p1evtxdeq.k | |- ( ph -> K e. X ) |
||
| p1evtxdeq.d | |- ( ph -> K e/ dom I ) |
||
| p1evtxdeq.u | |- ( ph -> U e. V ) |
||
| p1evtxdeq.e | |- ( ph -> E e. Y ) |
||
| Assertion | p1evtxdeqlem | |- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | |- V = ( Vtx ` G ) |
|
| 2 | p1evtxdeq.i | |- I = ( iEdg ` G ) |
|
| 3 | p1evtxdeq.f | |- ( ph -> Fun I ) |
|
| 4 | p1evtxdeq.fv | |- ( ph -> ( Vtx ` F ) = V ) |
|
| 5 | p1evtxdeq.fi | |- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
|
| 6 | p1evtxdeq.k | |- ( ph -> K e. X ) |
|
| 7 | p1evtxdeq.d | |- ( ph -> K e/ dom I ) |
|
| 8 | p1evtxdeq.u | |- ( ph -> U e. V ) |
|
| 9 | p1evtxdeq.e | |- ( ph -> E e. Y ) |
|
| 10 | 1 | fvexi | |- V e. _V |
| 11 | snex | |- { <. K , E >. } e. _V |
|
| 12 | 10 11 | pm3.2i | |- ( V e. _V /\ { <. K , E >. } e. _V ) |
| 13 | opiedgfv | |- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
|
| 14 | 13 | eqcomd | |- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. ) ) |
| 15 | 12 14 | ax-mp | |- { <. K , E >. } = ( iEdg ` <. V , { <. K , E >. } >. ) |
| 16 | opvtxfv | |- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
|
| 17 | 12 16 | mp1i | |- ( ph -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
| 18 | dmsnopg | |- ( E e. Y -> dom { <. K , E >. } = { K } ) |
|
| 19 | 9 18 | syl | |- ( ph -> dom { <. K , E >. } = { K } ) |
| 20 | 19 | ineq2d | |- ( ph -> ( dom I i^i dom { <. K , E >. } ) = ( dom I i^i { K } ) ) |
| 21 | df-nel | |- ( K e/ dom I <-> -. K e. dom I ) |
|
| 22 | 7 21 | sylib | |- ( ph -> -. K e. dom I ) |
| 23 | disjsn | |- ( ( dom I i^i { K } ) = (/) <-> -. K e. dom I ) |
|
| 24 | 22 23 | sylibr | |- ( ph -> ( dom I i^i { K } ) = (/) ) |
| 25 | 20 24 | eqtrd | |- ( ph -> ( dom I i^i dom { <. K , E >. } ) = (/) ) |
| 26 | funsng | |- ( ( K e. X /\ E e. Y ) -> Fun { <. K , E >. } ) |
|
| 27 | 6 9 26 | syl2anc | |- ( ph -> Fun { <. K , E >. } ) |
| 28 | 2 15 1 17 4 25 3 27 8 5 | vtxdun | |- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) ) |