This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralsng.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | rexsng | |- ( A e. V -> ( E. x e. { A } ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | notbid | |- ( x = A -> ( -. ph <-> -. ps ) ) |
| 3 | 2 | ralsng | |- ( A e. V -> ( A. x e. { A } -. ph <-> -. ps ) ) |
| 4 | dfrex2 | |- ( E. x e. { A } ph <-> -. A. x e. { A } -. ph ) |
|
| 5 | bicom1 | |- ( ( A. x e. { A } -. ph <-> -. ps ) -> ( -. ps <-> A. x e. { A } -. ph ) ) |
|
| 6 | 5 | con1bid | |- ( ( A. x e. { A } -. ph <-> -. ps ) -> ( -. A. x e. { A } -. ph <-> ps ) ) |
| 7 | 4 6 | bitrid | |- ( ( A. x e. { A } -. ph <-> -. ps ) -> ( E. x e. { A } ph <-> ps ) ) |
| 8 | 3 7 | syl | |- ( A e. V -> ( E. x e. { A } ph <-> ps ) ) |