This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1egrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1egrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1egrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| 1egrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| 1egrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| 1egrvtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| 1egrvtxdg0.n | ⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) | ||
| 1egrvtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) | ||
| Assertion | 1egrvtxdg0 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1egrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1egrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1egrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | 1egrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | 1egrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 6 | 1egrvtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 7 | 1egrvtxdg0.n | ⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) | |
| 8 | 1egrvtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) | |
| 9 | 1 | adantl | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 10 | 2 | adantl | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐴 ∈ 𝑋 ) |
| 11 | 3 | adantl | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐵 ∈ 𝑉 ) |
| 12 | 8 | adantl | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
| 13 | preq2 | ⊢ ( 𝐷 = 𝐵 → { 𝐵 , 𝐷 } = { 𝐵 , 𝐵 } ) | |
| 14 | 13 | eqcoms | ⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝐷 } = { 𝐵 , 𝐵 } ) |
| 15 | dfsn2 | ⊢ { 𝐵 } = { 𝐵 , 𝐵 } | |
| 16 | 14 15 | eqtr4di | ⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝐷 } = { 𝐵 } ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → { 𝐵 , 𝐷 } = { 𝐵 } ) |
| 18 | 17 | opeq2d | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 〈 𝐴 , { 𝐵 , 𝐷 } 〉 = 〈 𝐴 , { 𝐵 } 〉 ) |
| 19 | 18 | sneqd | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { 〈 𝐴 , { 𝐵 } 〉 } ) |
| 20 | 12 19 | eqtrd | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 } 〉 } ) |
| 21 | 5 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 22 | 4 21 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵 ) ) |
| 23 | eldifsn | ⊢ ( 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵 ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ) |
| 26 | 9 10 11 20 25 | 1loopgrvd0 | ⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |
| 27 | 26 | ex | ⊢ ( 𝐵 = 𝐷 → ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) ) |
| 28 | necom | ⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) | |
| 29 | df-ne | ⊢ ( 𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵 ) | |
| 30 | 28 29 | sylbb | ⊢ ( 𝐵 ≠ 𝐶 → ¬ 𝐶 = 𝐵 ) |
| 31 | 5 30 | syl | ⊢ ( 𝜑 → ¬ 𝐶 = 𝐵 ) |
| 32 | 7 | neneqd | ⊢ ( 𝜑 → ¬ 𝐶 = 𝐷 ) |
| 33 | 31 32 | jca | ⊢ ( 𝜑 → ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
| 35 | ioran | ⊢ ( ¬ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ↔ ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ¬ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) |
| 37 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 38 | 8 | rneqd | ⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
| 39 | rnsnopg | ⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { { 𝐵 , 𝐷 } } ) | |
| 40 | 2 39 | syl | ⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { { 𝐵 , 𝐷 } } ) |
| 41 | 38 40 | eqtrd | ⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
| 42 | 37 41 | eqtrid | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
| 43 | 42 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
| 44 | 43 | rexeqdv | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ↔ ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ) ) |
| 45 | prex | ⊢ { 𝐵 , 𝐷 } ∈ V | |
| 46 | eleq2 | ⊢ ( 𝑒 = { 𝐵 , 𝐷 } → ( 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) | |
| 47 | 46 | rexsng | ⊢ ( { 𝐵 , 𝐷 } ∈ V → ( ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) |
| 48 | 45 47 | mp1i | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) |
| 49 | elprg | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) | |
| 50 | 4 49 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
| 52 | 44 48 51 | 3bitrd | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
| 53 | 36 52 | mtbird | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) |
| 54 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 55 | 2 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐴 ∈ 𝑋 ) |
| 56 | 3 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 57 | 56 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 58 | 6 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
| 59 | 58 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
| 60 | 8 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
| 61 | simpl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐵 ≠ 𝐷 ) | |
| 62 | 54 55 57 59 60 61 | usgr1e | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐺 ∈ USGraph ) |
| 63 | 4 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
| 64 | 63 | adantl | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
| 65 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 66 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 67 | 54 65 66 | vtxdusgr0edgnel | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) ) |
| 68 | 62 64 67 | syl2anc | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) ) |
| 69 | 53 68 | mpbird | ⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |
| 70 | 69 | ex | ⊢ ( 𝐵 ≠ 𝐷 → ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) ) |
| 71 | 27 70 | pm2.61ine | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |