This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph with one edge (with additional assumption that B =/= C since otherwise the edge is a loop!). (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgr1e.v | |- V = ( Vtx ` G ) |
|
| uspgr1e.a | |- ( ph -> A e. X ) |
||
| uspgr1e.b | |- ( ph -> B e. V ) |
||
| uspgr1e.c | |- ( ph -> C e. V ) |
||
| uspgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
||
| usgr1e.e | |- ( ph -> B =/= C ) |
||
| Assertion | usgr1e | |- ( ph -> G e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgr1e.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgr1e.a | |- ( ph -> A e. X ) |
|
| 3 | uspgr1e.b | |- ( ph -> B e. V ) |
|
| 4 | uspgr1e.c | |- ( ph -> C e. V ) |
|
| 5 | uspgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
|
| 6 | usgr1e.e | |- ( ph -> B =/= C ) |
|
| 7 | 1 2 3 4 5 | uspgr1e | |- ( ph -> G e. USPGraph ) |
| 8 | hashprg | |- ( ( B e. V /\ C e. V ) -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) |
|
| 9 | 3 4 8 | syl2anc | |- ( ph -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) |
| 10 | 6 9 | mpbid | |- ( ph -> ( # ` { B , C } ) = 2 ) |
| 11 | prex | |- { B , C } e. _V |
|
| 12 | fveqeq2 | |- ( x = { B , C } -> ( ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) ) |
|
| 13 | 11 12 | ralsn | |- ( A. x e. { { B , C } } ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) |
| 14 | 10 13 | sylibr | |- ( ph -> A. x e. { { B , C } } ( # ` x ) = 2 ) |
| 15 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 16 | 15 | a1i | |- ( ph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 17 | 5 | rneqd | |- ( ph -> ran ( iEdg ` G ) = ran { <. A , { B , C } >. } ) |
| 18 | rnsnopg | |- ( A e. X -> ran { <. A , { B , C } >. } = { { B , C } } ) |
|
| 19 | 2 18 | syl | |- ( ph -> ran { <. A , { B , C } >. } = { { B , C } } ) |
| 20 | 16 17 19 | 3eqtrd | |- ( ph -> ( Edg ` G ) = { { B , C } } ) |
| 21 | 14 20 | raleqtrrdv | |- ( ph -> A. x e. ( Edg ` G ) ( # ` x ) = 2 ) |
| 22 | usgruspgrb | |- ( G e. USGraph <-> ( G e. USPGraph /\ A. x e. ( Edg ` G ) ( # ` x ) = 2 ) ) |
|
| 23 | 7 21 22 | sylanbrc | |- ( ph -> G e. USGraph ) |