This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subm.z | |- .0. = ( 0g ` G ) |
|
| Assertion | 0subm | |- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subm.z | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 2 1 | mndidcl | |- ( G e. Mnd -> .0. e. ( Base ` G ) ) |
| 4 | 3 | snssd | |- ( G e. Mnd -> { .0. } C_ ( Base ` G ) ) |
| 5 | 1 | fvexi | |- .0. e. _V |
| 6 | 5 | snid | |- .0. e. { .0. } |
| 7 | 6 | a1i | |- ( G e. Mnd -> .0. e. { .0. } ) |
| 8 | velsn | |- ( a e. { .0. } <-> a = .0. ) |
|
| 9 | velsn | |- ( b e. { .0. } <-> b = .0. ) |
|
| 10 | 8 9 | anbi12i | |- ( ( a e. { .0. } /\ b e. { .0. } ) <-> ( a = .0. /\ b = .0. ) ) |
| 11 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 12 | 2 11 1 | mndlid | |- ( ( G e. Mnd /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 13 | 3 12 | mpdan | |- ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 14 | ovex | |- ( .0. ( +g ` G ) .0. ) e. _V |
|
| 15 | 14 | elsn | |- ( ( .0. ( +g ` G ) .0. ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) = .0. ) |
| 16 | 13 15 | sylibr | |- ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) e. { .0. } ) |
| 17 | oveq12 | |- ( ( a = .0. /\ b = .0. ) -> ( a ( +g ` G ) b ) = ( .0. ( +g ` G ) .0. ) ) |
|
| 18 | 17 | eleq1d | |- ( ( a = .0. /\ b = .0. ) -> ( ( a ( +g ` G ) b ) e. { .0. } <-> ( .0. ( +g ` G ) .0. ) e. { .0. } ) ) |
| 19 | 16 18 | syl5ibrcom | |- ( G e. Mnd -> ( ( a = .0. /\ b = .0. ) -> ( a ( +g ` G ) b ) e. { .0. } ) ) |
| 20 | 10 19 | biimtrid | |- ( G e. Mnd -> ( ( a e. { .0. } /\ b e. { .0. } ) -> ( a ( +g ` G ) b ) e. { .0. } ) ) |
| 21 | 20 | ralrimivv | |- ( G e. Mnd -> A. a e. { .0. } A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } ) |
| 22 | 2 1 11 | issubm | |- ( G e. Mnd -> ( { .0. } e. ( SubMnd ` G ) <-> ( { .0. } C_ ( Base ` G ) /\ .0. e. { .0. } /\ A. a e. { .0. } A. b e. { .0. } ( a ( +g ` G ) b ) e. { .0. } ) ) ) |
| 23 | 4 7 21 22 | mpbir3and | |- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |