This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submod.h | |- H = ( G |`s Y ) |
|
| submod.o | |- O = ( od ` G ) |
||
| submod.p | |- P = ( od ` H ) |
||
| Assertion | submod | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submod.h | |- H = ( G |`s Y ) |
|
| 2 | submod.o | |- O = ( od ` G ) |
|
| 3 | submod.p | |- P = ( od ` H ) |
|
| 4 | simpll | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> Y e. ( SubMnd ` G ) ) |
|
| 5 | nnnn0 | |- ( x e. NN -> x e. NN0 ) |
|
| 6 | 5 | adantl | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> x e. NN0 ) |
| 7 | simplr | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> A e. Y ) |
|
| 8 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 9 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 10 | 8 1 9 | submmulg | |- ( ( Y e. ( SubMnd ` G ) /\ x e. NN0 /\ A e. Y ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) |
| 11 | 4 6 7 10 | syl3anc | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) |
| 12 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 13 | 1 12 | subm0 | |- ( Y e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 14 | 13 | ad2antrr | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 15 | 11 14 | eqeq12d | |- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( ( x ( .g ` G ) A ) = ( 0g ` G ) <-> ( x ( .g ` H ) A ) = ( 0g ` H ) ) ) |
| 16 | 15 | rabbidva | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } ) |
| 17 | eqeq1 | |- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) <-> { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) ) ) |
|
| 18 | infeq1 | |- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) = inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) |
|
| 19 | 17 18 | ifbieq2d | |- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
| 20 | 16 19 | syl | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
| 21 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 22 | 21 | submss | |- ( Y e. ( SubMnd ` G ) -> Y C_ ( Base ` G ) ) |
| 23 | 22 | sselda | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` G ) ) |
| 24 | eqid | |- { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } |
|
| 25 | 21 8 12 2 24 | odval | |- ( A e. ( Base ` G ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) |
| 26 | 23 25 | syl | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) |
| 27 | simpr | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. Y ) |
|
| 28 | 22 | adantr | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y C_ ( Base ` G ) ) |
| 29 | 1 21 | ressbas2 | |- ( Y C_ ( Base ` G ) -> Y = ( Base ` H ) ) |
| 30 | 28 29 | syl | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y = ( Base ` H ) ) |
| 31 | 27 30 | eleqtrd | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` H ) ) |
| 32 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 33 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 34 | eqid | |- { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } |
|
| 35 | 32 9 33 3 34 | odval | |- ( A e. ( Base ` H ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
| 36 | 31 35 | syl | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
| 37 | 20 26 36 | 3eqtr4d | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |