This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 4-Sep-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-od | |- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cod | |- od |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Base ` g ) |
| 7 | vn | |- n |
|
| 8 | cn | |- NN |
|
| 9 | 7 | cv | |- n |
| 10 | cmg | |- .g |
|
| 11 | 5 10 | cfv | |- ( .g ` g ) |
| 12 | 3 | cv | |- x |
| 13 | 9 12 11 | co | |- ( n ( .g ` g ) x ) |
| 14 | c0g | |- 0g |
|
| 15 | 5 14 | cfv | |- ( 0g ` g ) |
| 16 | 13 15 | wceq | |- ( n ( .g ` g ) x ) = ( 0g ` g ) |
| 17 | 16 7 8 | crab | |- { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } |
| 18 | vi | |- i |
|
| 19 | 18 | cv | |- i |
| 20 | c0 | |- (/) |
|
| 21 | 19 20 | wceq | |- i = (/) |
| 22 | cc0 | |- 0 |
|
| 23 | cr | |- RR |
|
| 24 | clt | |- < |
|
| 25 | 19 23 24 | cinf | |- inf ( i , RR , < ) |
| 26 | 21 22 25 | cif | |- if ( i = (/) , 0 , inf ( i , RR , < ) ) |
| 27 | 18 17 26 | csb | |- [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) |
| 28 | 3 6 27 | cmpt | |- ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 29 | 1 2 28 | cmpt | |- ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 30 | 0 29 | wceq | |- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { n e. NN | ( n ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |