This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of functors from an initial category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0fucterm.c | |- ( ph -> C e. V ) |
|
| 0fucterm.b | |- ( ph -> (/) = ( Base ` C ) ) |
||
| 0fucterm.d | |- ( ph -> D e. Cat ) |
||
| 0fucterm.q | |- Q = ( C FuncCat D ) |
||
| Assertion | 0fucterm | |- ( ph -> Q e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fucterm.c | |- ( ph -> C e. V ) |
|
| 2 | 0fucterm.b | |- ( ph -> (/) = ( Base ` C ) ) |
|
| 3 | 0fucterm.d | |- ( ph -> D e. Cat ) |
|
| 4 | 0fucterm.q | |- Q = ( C FuncCat D ) |
|
| 5 | 4 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 6 | 5 | a1i | |- ( ph -> ( C Func D ) = ( Base ` Q ) ) |
| 7 | eqid | |- ( C Nat D ) = ( C Nat D ) |
|
| 8 | 4 7 | fuchom | |- ( C Nat D ) = ( Hom ` Q ) |
| 9 | 8 | a1i | |- ( ph -> ( C Nat D ) = ( Hom ` Q ) ) |
| 10 | simprl | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
|
| 11 | 7 10 | nat1st2nd | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 7 11 12 | natfn | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn ( Base ` C ) ) |
| 14 | 2 | ad2antrr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> (/) = ( Base ` C ) ) |
| 15 | 14 | fneq2d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( a Fn (/) <-> a Fn ( Base ` C ) ) ) |
| 16 | 13 15 | mpbird | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn (/) ) |
| 17 | fn0 | |- ( a Fn (/) <-> a = (/) ) |
|
| 18 | 16 17 | sylib | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = (/) ) |
| 19 | simprr | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( f ( C Nat D ) g ) ) |
|
| 20 | 7 19 | nat1st2nd | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 21 | 7 20 12 | natfn | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn ( Base ` C ) ) |
| 22 | 14 | fneq2d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( b Fn (/) <-> b Fn ( Base ` C ) ) ) |
| 23 | 21 22 | mpbird | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn (/) ) |
| 24 | fn0 | |- ( b Fn (/) <-> b = (/) ) |
|
| 25 | 23 24 | sylib | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b = (/) ) |
| 26 | 18 25 | eqtr4d | |- ( ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = b ) |
| 27 | 26 | ralrimivva | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 28 | moel | |- ( E* a a e. ( f ( C Nat D ) g ) <-> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
|
| 29 | 27 28 | sylibr | |- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> E* a a e. ( f ( C Nat D ) g ) ) |
| 30 | 0catg | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
|
| 31 | 1 2 30 | syl2anc | |- ( ph -> C e. Cat ) |
| 32 | 4 31 3 | fuccat | |- ( ph -> Q e. Cat ) |
| 33 | 6 9 29 32 | isthincd | |- ( ph -> Q e. ThinCat ) |
| 34 | opex | |- <. (/) , (/) >. e. _V |
|
| 35 | 34 | a1i | |- ( ph -> <. (/) , (/) >. e. _V ) |
| 36 | 1 2 3 | 0funcg | |- ( ph -> ( C Func D ) = { <. (/) , (/) >. } ) |
| 37 | sneq | |- ( f = <. (/) , (/) >. -> { f } = { <. (/) , (/) >. } ) |
|
| 38 | 37 | eqeq2d | |- ( f = <. (/) , (/) >. -> ( ( C Func D ) = { f } <-> ( C Func D ) = { <. (/) , (/) >. } ) ) |
| 39 | 35 36 38 | spcedv | |- ( ph -> E. f ( C Func D ) = { f } ) |
| 40 | 5 | istermc | |- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) |
| 41 | 33 39 40 | sylanbrc | |- ( ph -> Q e. TermCat ) |