This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functor from the empty category. Corollary of Definition 3.47 of Adamek p. 40, Definition 7.1 of Adamek p. 101, Example 3.3(4.c) of Adamek p. 24, and Example 7.2(3) of Adamek p. 101. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funcg.c | |- ( ph -> C e. V ) |
|
| 0funcg.b | |- ( ph -> (/) = ( Base ` C ) ) |
||
| 0funcg.d | |- ( ph -> D e. Cat ) |
||
| Assertion | 0funcg | |- ( ph -> ( C Func D ) = { <. (/) , (/) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcg.c | |- ( ph -> C e. V ) |
|
| 2 | 0funcg.b | |- ( ph -> (/) = ( Base ` C ) ) |
|
| 3 | 0funcg.d | |- ( ph -> D e. Cat ) |
|
| 4 | relfunc | |- Rel ( C Func D ) |
|
| 5 | 0ex | |- (/) e. _V |
|
| 6 | 5 5 | relsnop | |- Rel { <. (/) , (/) >. } |
| 7 | 1 2 3 | 0funcg2 | |- ( ph -> ( f ( C Func D ) g <-> ( f = (/) /\ g = (/) ) ) ) |
| 8 | brsnop | |- ( ( (/) e. _V /\ (/) e. _V ) -> ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) ) |
|
| 9 | 5 5 8 | mp2an | |- ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) |
| 10 | 7 9 | bitr4di | |- ( ph -> ( f ( C Func D ) g <-> f { <. (/) , (/) >. } g ) ) |
| 11 | 4 6 10 | eqbrrdiv | |- ( ph -> ( C Func D ) = { <. (/) , (/) >. } ) |