This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All functors between two terminal categories are isomorphisms. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termfucterm.c | |- C = ( CatCat ` U ) |
|
| termfucterm.b | |- B = ( Base ` C ) |
||
| termfucterm.i | |- I = ( Iso ` C ) |
||
| termfucterm.x | |- ( ph -> X e. B ) |
||
| termfucterm.xt | |- ( ph -> X e. TermCat ) |
||
| termfucterm.y | |- ( ph -> Y e. B ) |
||
| termfucterm.yt | |- ( ph -> Y e. TermCat ) |
||
| Assertion | termfucterm | |- ( ph -> ( X Func Y ) = ( X I Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termfucterm.c | |- C = ( CatCat ` U ) |
|
| 2 | termfucterm.b | |- B = ( Base ` C ) |
|
| 3 | termfucterm.i | |- I = ( Iso ` C ) |
|
| 4 | termfucterm.x | |- ( ph -> X e. B ) |
|
| 5 | termfucterm.xt | |- ( ph -> X e. TermCat ) |
|
| 6 | termfucterm.y | |- ( ph -> Y e. B ) |
|
| 7 | termfucterm.yt | |- ( ph -> Y e. TermCat ) |
|
| 8 | 1 2 4 6 5 | termcciso | |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) |
| 9 | 7 8 | mpbid | |- ( ph -> X ( ~=c ` C ) Y ) |
| 10 | cicrcl2 | |- ( X ( ~=c ` C ) Y -> C e. Cat ) |
|
| 11 | 9 10 | syl | |- ( ph -> C e. Cat ) |
| 12 | 3 2 11 4 6 | cic | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. g g e. ( X I Y ) ) ) |
| 13 | 9 12 | mpbid | |- ( ph -> E. g g e. ( X I Y ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ f e. ( X Func Y ) ) -> E. g g e. ( X I Y ) ) |
| 15 | eqid | |- ( X FuncCat Y ) = ( X FuncCat Y ) |
|
| 16 | 5 | termccd | |- ( ph -> X e. Cat ) |
| 17 | 15 16 7 | fucterm | |- ( ph -> ( X FuncCat Y ) e. TermCat ) |
| 18 | 17 | ad2antrr | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> ( X FuncCat Y ) e. TermCat ) |
| 19 | 15 | fucbas | |- ( X Func Y ) = ( Base ` ( X FuncCat Y ) ) |
| 20 | simplr | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> f e. ( X Func Y ) ) |
|
| 21 | fullfunc | |- ( X Full Y ) C_ ( X Func Y ) |
|
| 22 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 23 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 24 | simpr | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> g e. ( X I Y ) ) |
|
| 25 | 1 22 23 3 24 | catcisoi | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> ( g e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` g ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) |
| 26 | 25 | simpld | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> g e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 27 | 26 | elin1d | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> g e. ( X Full Y ) ) |
| 28 | 21 27 | sselid | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> g e. ( X Func Y ) ) |
| 29 | 18 19 20 28 | termcbasmo | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> f = g ) |
| 30 | 29 24 | eqeltrd | |- ( ( ( ph /\ f e. ( X Func Y ) ) /\ g e. ( X I Y ) ) -> f e. ( X I Y ) ) |
| 31 | 14 30 | exlimddv | |- ( ( ph /\ f e. ( X Func Y ) ) -> f e. ( X I Y ) ) |
| 32 | simpr | |- ( ( ph /\ f e. ( X I Y ) ) -> f e. ( X I Y ) ) |
|
| 33 | 1 22 23 3 32 | catcisoi | |- ( ( ph /\ f e. ( X I Y ) ) -> ( f e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` f ) : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) |
| 34 | 33 | simpld | |- ( ( ph /\ f e. ( X I Y ) ) -> f e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
| 35 | 34 | elin1d | |- ( ( ph /\ f e. ( X I Y ) ) -> f e. ( X Full Y ) ) |
| 36 | 21 35 | sselid | |- ( ( ph /\ f e. ( X I Y ) ) -> f e. ( X Func Y ) ) |
| 37 | 31 36 | impbida | |- ( ph -> ( f e. ( X Func Y ) <-> f e. ( X I Y ) ) ) |
| 38 | 37 | eqrdv | |- ( ph -> ( X Func Y ) = ( X I Y ) ) |