This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istermc.b | |- B = ( Base ` C ) |
|
| Assertion | istermc | |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istermc.b | |- B = ( Base ` C ) |
|
| 2 | fveqeq2 | |- ( c = C -> ( ( Base ` c ) = { x } <-> ( Base ` C ) = { x } ) ) |
|
| 3 | 2 | exbidv | |- ( c = C -> ( E. x ( Base ` c ) = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 4 | 1 | eqeq1i | |- ( B = { x } <-> ( Base ` C ) = { x } ) |
| 5 | 4 | exbii | |- ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) |
| 6 | 3 5 | bitr4di | |- ( c = C -> ( E. x ( Base ` c ) = { x } <-> E. x B = { x } ) ) |
| 7 | df-termc | |- TermCat = { c e. ThinCat | E. x ( Base ` c ) = { x } } |
|
| 8 | 6 7 | elrab2 | |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) |