This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0catg | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> (/) = ( Base ` C ) ) |
|
| 2 | eqidd | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> ( Hom ` C ) = ( Hom ` C ) ) |
|
| 3 | eqidd | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> ( comp ` C ) = ( comp ` C ) ) |
|
| 4 | simpl | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. V ) |
|
| 5 | noel | |- -. x e. (/) |
|
| 6 | 5 | pm2.21i | |- ( x e. (/) -> (/) e. ( x ( Hom ` C ) x ) ) |
| 7 | 6 | adantl | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ x e. (/) ) -> (/) e. ( x ( Hom ` C ) x ) ) |
| 8 | simpr1 | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ f e. ( y ( Hom ` C ) x ) ) ) -> x e. (/) ) |
|
| 9 | 5 | pm2.21i | |- ( x e. (/) -> ( (/) ( <. y , x >. ( comp ` C ) x ) f ) = f ) |
| 10 | 8 9 | syl | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ f e. ( y ( Hom ` C ) x ) ) ) -> ( (/) ( <. y , x >. ( comp ` C ) x ) f ) = f ) |
| 11 | simpr1 | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ f e. ( x ( Hom ` C ) y ) ) ) -> x e. (/) ) |
|
| 12 | 5 | pm2.21i | |- ( x e. (/) -> ( f ( <. x , x >. ( comp ` C ) y ) (/) ) = f ) |
| 13 | 11 12 | syl | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( f ( <. x , x >. ( comp ` C ) y ) (/) ) = f ) |
| 14 | simp21 | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ z e. (/) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. (/) ) |
|
| 15 | 5 | pm2.21i | |- ( x e. (/) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 16 | 14 15 | syl | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( x e. (/) /\ y e. (/) /\ z e. (/) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 17 | simp2ll | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( ( x e. (/) /\ y e. (/) ) /\ ( z e. (/) /\ w e. (/) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) /\ h e. ( z ( Hom ` C ) w ) ) ) -> x e. (/) ) |
|
| 18 | 5 | pm2.21i | |- ( x e. (/) -> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 19 | 17 18 | syl | |- ( ( ( C e. V /\ (/) = ( Base ` C ) ) /\ ( ( x e. (/) /\ y e. (/) ) /\ ( z e. (/) /\ w e. (/) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) /\ h e. ( z ( Hom ` C ) w ) ) ) -> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 20 | 1 2 3 4 7 10 13 16 19 | iscatd | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |