This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of functors from an initial category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0fucterm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 0fucterm.b | ⊢ ( 𝜑 → ∅ = ( Base ‘ 𝐶 ) ) | ||
| 0fucterm.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| 0fucterm.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| Assertion | 0fucterm | ⊢ ( 𝜑 → 𝑄 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fucterm.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 2 | 0fucterm.b | ⊢ ( 𝜑 → ∅ = ( Base ‘ 𝐶 ) ) | |
| 3 | 0fucterm.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | 0fucterm.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 5 | 4 | fucbas | ⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) ) |
| 7 | eqid | ⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) | |
| 8 | 4 7 | fuchom | ⊢ ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 ) ) |
| 10 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) | |
| 11 | 7 10 | nat1st2nd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 7 11 12 | natfn | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 Fn ( Base ‘ 𝐶 ) ) |
| 14 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ∅ = ( Base ‘ 𝐶 ) ) |
| 15 | 14 | fneq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 𝑎 Fn ∅ ↔ 𝑎 Fn ( Base ‘ 𝐶 ) ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 Fn ∅ ) |
| 17 | fn0 | ⊢ ( 𝑎 Fn ∅ ↔ 𝑎 = ∅ ) | |
| 18 | 16 17 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 = ∅ ) |
| 19 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) | |
| 20 | 7 19 | nat1st2nd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 ∈ ( 〈 ( 1st ‘ 𝑓 ) , ( 2nd ‘ 𝑓 ) 〉 ( 𝐶 Nat 𝐷 ) 〈 ( 1st ‘ 𝑔 ) , ( 2nd ‘ 𝑔 ) 〉 ) ) |
| 21 | 7 20 12 | natfn | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 Fn ( Base ‘ 𝐶 ) ) |
| 22 | 14 | fneq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → ( 𝑏 Fn ∅ ↔ 𝑏 Fn ( Base ‘ 𝐶 ) ) ) |
| 23 | 21 22 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 Fn ∅ ) |
| 24 | fn0 | ⊢ ( 𝑏 Fn ∅ ↔ 𝑏 = ∅ ) | |
| 25 | 23 24 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑏 = ∅ ) |
| 26 | 18 25 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) ) → 𝑎 = 𝑏 ) |
| 27 | 26 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) 𝑎 = 𝑏 ) |
| 28 | moel | ⊢ ( ∃* 𝑎 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ↔ ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ 𝑏 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) 𝑎 = 𝑏 ) | |
| 29 | 27 28 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) ) → ∃* 𝑎 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ) |
| 30 | 0catg | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 31 | 1 2 30 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 32 | 4 31 3 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 33 | 6 9 29 32 | isthincd | ⊢ ( 𝜑 → 𝑄 ∈ ThinCat ) |
| 34 | opex | ⊢ 〈 ∅ , ∅ 〉 ∈ V | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → 〈 ∅ , ∅ 〉 ∈ V ) |
| 36 | 1 2 3 | 0funcg | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) = { 〈 ∅ , ∅ 〉 } ) |
| 37 | sneq | ⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → { 𝑓 } = { 〈 ∅ , ∅ 〉 } ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → ( ( 𝐶 Func 𝐷 ) = { 𝑓 } ↔ ( 𝐶 Func 𝐷 ) = { 〈 ∅ , ∅ 〉 } ) ) |
| 39 | 35 36 38 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) |
| 40 | 5 | istermc | ⊢ ( 𝑄 ∈ TermCat ↔ ( 𝑄 ∈ ThinCat ∧ ∃ 𝑓 ( 𝐶 Func 𝐷 ) = { 𝑓 } ) ) |
| 41 | 33 39 40 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ TermCat ) |