This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
||
| Assertion | 01sqrexlem3 | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. z e. RR A. y e. S y <_ z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 2 | 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
|
| 3 | ssrab2 | |- { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR+ |
|
| 4 | rpssre | |- RR+ C_ RR |
|
| 5 | 3 4 | sstri | |- { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR |
| 6 | 1 5 | eqsstri | |- S C_ RR |
| 7 | 6 | a1i | |- ( ( A e. RR+ /\ A <_ 1 ) -> S C_ RR ) |
| 8 | 1 2 | 01sqrexlem2 | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) |
| 9 | 8 | ne0d | |- ( ( A e. RR+ /\ A <_ 1 ) -> S =/= (/) ) |
| 10 | 1re | |- 1 e. RR |
|
| 11 | 1 2 | 01sqrexlem1 | |- ( ( A e. RR+ /\ A <_ 1 ) -> A. y e. S y <_ 1 ) |
| 12 | brralrspcev | |- ( ( 1 e. RR /\ A. y e. S y <_ 1 ) -> E. z e. RR A. y e. S y <_ z ) |
|
| 13 | 10 11 12 | sylancr | |- ( ( A e. RR+ /\ A <_ 1 ) -> E. z e. RR A. y e. S y <_ z ) |
| 14 | 7 9 13 | 3jca | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. z e. RR A. y e. S y <_ z ) ) |