This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
||
| Assertion | 01sqrexlem2 | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 2 | 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
|
| 3 | simpl | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. RR+ ) |
|
| 4 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 5 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 6 | 1re | |- 1 e. RR |
|
| 7 | lemul1 | |- ( ( A e. RR /\ 1 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) |
|
| 8 | 6 7 | mp3an2 | |- ( ( A e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) |
| 9 | 4 4 5 8 | syl12anc | |- ( A e. RR+ -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) |
| 10 | 9 | biimpa | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( A x. A ) <_ ( 1 x. A ) ) |
| 11 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 12 | 11 | adantr | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. CC ) |
| 13 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
| 14 | 13 | eqcomd | |- ( A e. CC -> ( A x. A ) = ( A ^ 2 ) ) |
| 15 | 12 14 | syl | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( A x. A ) = ( A ^ 2 ) ) |
| 16 | 11 | mullidd | |- ( A e. RR+ -> ( 1 x. A ) = A ) |
| 17 | 16 | adantr | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( 1 x. A ) = A ) |
| 18 | 10 15 17 | 3brtr3d | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( A ^ 2 ) <_ A ) |
| 19 | oveq1 | |- ( x = A -> ( x ^ 2 ) = ( A ^ 2 ) ) |
|
| 20 | 19 | breq1d | |- ( x = A -> ( ( x ^ 2 ) <_ A <-> ( A ^ 2 ) <_ A ) ) |
| 21 | 20 1 | elrab2 | |- ( A e. S <-> ( A e. RR+ /\ ( A ^ 2 ) <_ A ) ) |
| 22 | 3 18 21 | sylanbrc | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) |