This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringmulg | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 2 | zaddcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) | |
| 3 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | 1 2 3 4 | cnsubglem | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 6 | eqid | ⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) | |
| 7 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 8 | eqid | ⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) | |
| 9 | 6 7 8 | subgmulg | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
| 10 | 5 9 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 12 | 11 | zcnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 13 | cnfldmulg | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 15 | 10 14 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |