This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringmulg | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ( .g ` ZZring ) B ) = ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 2 | zaddcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
|
| 3 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | 1 2 3 4 | cnsubglem | |- ZZ e. ( SubGrp ` CCfld ) |
| 6 | eqid | |- ( .g ` CCfld ) = ( .g ` CCfld ) |
|
| 7 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 8 | eqid | |- ( .g ` ZZring ) = ( .g ` ZZring ) |
|
| 9 | 6 7 8 | subgmulg | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ A e. ZZ /\ B e. ZZ ) -> ( A ( .g ` CCfld ) B ) = ( A ( .g ` ZZring ) B ) ) |
| 10 | 5 9 | mp3an1 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ( .g ` CCfld ) B ) = ( A ( .g ` ZZring ) B ) ) |
| 11 | simpr | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
|
| 12 | 11 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
| 13 | cnfldmulg | |- ( ( A e. ZZ /\ B e. CC ) -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) |
|
| 14 | 12 13 | syldan | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ( .g ` CCfld ) B ) = ( A x. B ) ) |
| 15 | 10 14 | eqtr3d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ( .g ` ZZring ) B ) = ( A x. B ) ) |