This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | ||
| cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | ||
| cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 | ||
| Assertion | cnsubglem | ⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 2 | cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | |
| 3 | cnsubglem.3 | ⊢ ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ 𝐴 ) | |
| 4 | cnsubglem.4 | ⊢ 𝐵 ∈ 𝐴 | |
| 5 | 1 | ssriv | ⊢ 𝐴 ⊆ ℂ |
| 6 | 4 | ne0ii | ⊢ 𝐴 ≠ ∅ |
| 7 | 2 | ralrimiva | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) |
| 8 | cnfldneg | ⊢ ( 𝑥 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) | |
| 9 | 1 8 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) = - 𝑥 ) |
| 10 | 9 3 | eqeltrd | ⊢ ( 𝑥 ∈ 𝐴 → ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 11 | 7 10 | jca | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) |
| 13 | cnring | ⊢ ℂfld ∈ Ring | |
| 14 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
| 15 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 16 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 17 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 18 | 15 16 17 | issubg2 | ⊢ ( ℂfld ∈ Grp → ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) ) |
| 19 | 13 14 18 | mp2b | ⊢ ( 𝐴 ∈ ( SubGrp ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ( ( invg ‘ ℂfld ) ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 20 | 5 6 12 19 | mpbir3an | ⊢ 𝐴 ∈ ( SubGrp ‘ ℂfld ) |