This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnevpm.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| zrhpsgnevpm.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| zrhpsgnevpm.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| zrhpsgnodpm.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| zrhpsgnodpm.i | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | ||
| Assertion | zrhpsgnodpm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝐼 ‘ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnevpm.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | zrhpsgnevpm.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | zrhpsgnevpm.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | zrhpsgnodpm.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | zrhpsgnodpm.i | ⊢ 𝐼 = ( invg ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 8 | 6 2 7 | psgnghm2 | ⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 10 | 4 9 | ghmf | ⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑁 ∈ Fin → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 13 | eldifi | ⊢ ( 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) → 𝐹 ∈ 𝑃 ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 15 | fvco3 | ⊢ ( ( 𝑆 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 17 | 6 4 2 | psgnodpm | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑆 ‘ 𝐹 ) = - 1 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑌 ‘ - 1 ) ) |
| 20 | 1 | zrhrhm | ⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring RingHom 𝑅 ) ) |
| 21 | rhmghm | ⊢ ( 𝑌 ∈ ( ℤring RingHom 𝑅 ) → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 23 | 1z | ⊢ 1 ∈ ℤ | |
| 24 | 23 | a1i | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ℤ ) |
| 25 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 26 | eqid | ⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) | |
| 27 | 25 26 5 | ghminv | ⊢ ( ( 𝑌 ∈ ( ℤring GrpHom 𝑅 ) ∧ 1 ∈ ℤ ) → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
| 28 | 22 24 27 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) ) |
| 29 | zringinvg | ⊢ ( 1 ∈ ℤ → - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) ) | |
| 30 | 23 29 | ax-mp | ⊢ - 1 = ( ( invg ‘ ℤring ) ‘ 1 ) |
| 31 | 30 | eqcomi | ⊢ ( ( invg ‘ ℤring ) ‘ 1 ) = - 1 |
| 32 | 31 | fveq2i | ⊢ ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) |
| 33 | 32 | a1i | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ ( ( invg ‘ ℤring ) ‘ 1 ) ) = ( 𝑌 ‘ - 1 ) ) |
| 34 | 1 3 | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = 1 ) |
| 35 | 34 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ ( 𝑌 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 36 | 28 33 35 | 3eqtr3d | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( 𝑌 ‘ - 1 ) = ( 𝐼 ‘ 1 ) ) |
| 38 | 16 19 37 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( 𝑃 ∖ ( pmEven ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝐼 ‘ 1 ) ) |