This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of any class Y and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofipsgn.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| cofipsgn.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| Assertion | cofipsgn | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofipsgn.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | cofipsgn.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 4 | eqid | ⊢ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 5 | 3 1 4 2 | psgnfn | ⊢ 𝑆 Fn { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 6 | difeq1 | ⊢ ( 𝑝 = 𝑄 → ( 𝑝 ∖ I ) = ( 𝑄 ∖ I ) ) | |
| 7 | 6 | dmeqd | ⊢ ( 𝑝 = 𝑄 → dom ( 𝑝 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑝 = 𝑄 → ( dom ( 𝑝 ∖ I ) ∈ Fin ↔ dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
| 9 | simpr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → 𝑄 ∈ 𝑃 ) | |
| 10 | 3 1 | sygbasnfpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 11 | 8 9 10 | elrabd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → 𝑄 ∈ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 12 | fvco2 | ⊢ ( ( 𝑆 Fn { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ∧ 𝑄 ∈ { 𝑝 ∈ 𝑃 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) | |
| 13 | 5 11 12 | sylancr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |