This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " M divides N ". (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdiv | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑀 ≠ 0 ) |
| 3 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 4 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 5 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 6 | divcan3 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = 𝑘 ) | |
| 7 | 6 | 3coml | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = 𝑘 ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = 𝑘 ) |
| 9 | 5 8 | sylan2 | ⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = 𝑘 ) |
| 10 | 9 | 3adantl2 | ⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = 𝑘 ) |
| 11 | oveq1 | ⊢ ( ( 𝑀 · 𝑘 ) = 𝑁 → ( ( 𝑀 · 𝑘 ) / 𝑀 ) = ( 𝑁 / 𝑀 ) ) | |
| 12 | 10 11 | sylan9req | ⊢ ( ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑀 · 𝑘 ) = 𝑁 ) → 𝑘 = ( 𝑁 / 𝑀 ) ) |
| 13 | simplr | ⊢ ( ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑀 · 𝑘 ) = 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 14 | 12 13 | eqeltrrd | ⊢ ( ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑀 · 𝑘 ) = 𝑁 ) → ( 𝑁 / 𝑀 ) ∈ ℤ ) |
| 15 | 14 | rexlimdva2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 → ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 16 | divcan2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) | |
| 17 | 16 | 3com12 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) |
| 18 | oveq2 | ⊢ ( 𝑘 = ( 𝑁 / 𝑀 ) → ( 𝑀 · 𝑘 ) = ( 𝑀 · ( 𝑁 / 𝑀 ) ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝑘 = ( 𝑁 / 𝑀 ) → ( ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) ) |
| 20 | 19 | rspcev | ⊢ ( ( ( 𝑁 / 𝑀 ) ∈ ℤ ∧ ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 ) → ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ) |
| 21 | 20 | expcom | ⊢ ( ( 𝑀 · ( 𝑁 / 𝑀 ) ) = 𝑁 → ( ( 𝑁 / 𝑀 ) ∈ ℤ → ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ) ) |
| 22 | 17 21 | syl | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( ( 𝑁 / 𝑀 ) ∈ ℤ → ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ) ) |
| 23 | 15 22 | impbid | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 24 | 23 | 3expia | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 ≠ 0 → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) ) |
| 25 | 3 4 24 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≠ 0 → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) ) |
| 26 | 2 25 | mpd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑀 · 𝑘 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |