This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of divisibility: if D divides A and B then it divides A + B . (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdivadd | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 3 | nncn | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) | |
| 4 | nnne0 | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ≠ 0 ) | |
| 5 | 3 4 | jca | ⊢ ( 𝐷 ∈ ℕ → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 6 | divdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) | |
| 7 | 1 2 5 6 | syl3an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
| 8 | 7 | 3comr | ⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) = ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ) |
| 10 | zaddcl | ⊢ ( ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) → ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ∈ ℤ ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 / 𝐷 ) + ( 𝐵 / 𝐷 ) ) ∈ ℤ ) |
| 12 | 9 11 | eqeltrd | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝐴 / 𝐷 ) ∈ ℤ ∧ ( 𝐵 / 𝐷 ) ∈ ℤ ) ) → ( ( 𝐴 + 𝐵 ) / 𝐷 ) ∈ ℤ ) |