This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnepnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = +∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = +∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 3 | df-3or | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) | |
| 4 | or32 | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ) | |
| 5 | 2 3 4 | 3bitri | ⊢ ( 𝐴 ∈ ℝ* ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ) |
| 6 | df-ne | ⊢ ( 𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞ ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = +∞ ) ) |
| 8 | renepnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) | |
| 9 | mnfnepnf | ⊢ -∞ ≠ +∞ | |
| 10 | neeq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 ≠ +∞ ↔ -∞ ≠ +∞ ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( 𝐴 = -∞ → 𝐴 ≠ +∞ ) |
| 12 | 8 11 | jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → 𝐴 ≠ +∞ ) |
| 13 | 12 | neneqd | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → ¬ 𝐴 = +∞ ) |
| 14 | 13 | pm4.71i | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = +∞ ) ) |
| 15 | 1 7 14 | 3bitr4i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ) |