This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Is homeomorphic to" is transitive. (Contributed by FL, 9-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmphtr | ⊢ ( ( 𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿 ) → 𝐽 ≃ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | ⊢ ( 𝐽 ≃ 𝐾 ↔ ( 𝐽 Homeo 𝐾 ) ≠ ∅ ) | |
| 2 | hmph | ⊢ ( 𝐾 ≃ 𝐿 ↔ ( 𝐾 Homeo 𝐿 ) ≠ ∅ ) | |
| 3 | n0 | ⊢ ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ) | |
| 4 | n0 | ⊢ ( ( 𝐾 Homeo 𝐿 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) | |
| 5 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) ) | |
| 6 | hmeoco | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝐽 Homeo 𝐿 ) ) | |
| 7 | hmphi | ⊢ ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝐽 Homeo 𝐿 ) → 𝐽 ≃ 𝐿 ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) → 𝐽 ≃ 𝐿 ) |
| 9 | 8 | exlimivv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) → 𝐽 ≃ 𝐿 ) |
| 10 | 5 9 | sylbir | ⊢ ( ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝐾 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝐾 Homeo 𝐿 ) ) → 𝐽 ≃ 𝐿 ) |
| 11 | 3 4 10 | syl2anb | ⊢ ( ( ( 𝐽 Homeo 𝐾 ) ≠ ∅ ∧ ( 𝐾 Homeo 𝐿 ) ≠ ∅ ) → 𝐽 ≃ 𝐿 ) |
| 12 | 1 2 11 | syl2anb | ⊢ ( ( 𝐽 ≃ 𝐾 ∧ 𝐾 ≃ 𝐿 ) → 𝐽 ≃ 𝐿 ) |