This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0omnd | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ oMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0cmn | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd | |
| 2 | cmnmnd | ⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 4 | ovex | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ V | |
| 5 | xrge0base | ⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) | |
| 6 | xrge0le | ⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) | |
| 7 | eliccxr | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ℝ* ) | |
| 8 | 7 | xrleidd | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ≤ 𝑥 ) |
| 9 | eliccxr | ⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* ) | |
| 10 | xrletri3 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) | |
| 11 | 10 | biimprd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 12 | 7 9 11 | syl2an | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 13 | eliccxr | ⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) → 𝑧 ∈ ℝ* ) | |
| 14 | xrletr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 15 | 7 9 13 14 | syl3an | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 16 | 4 5 6 8 12 15 | isposi | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Poset |
| 17 | xrletri | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) | |
| 18 | 7 9 17 | syl2an | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 19 | 18 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) |
| 20 | 5 6 | istos | ⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset ↔ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Poset ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 21 | 16 19 20 | mpbir2an | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset |
| 22 | xleadd1a | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) | |
| 23 | 22 | ex | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) |
| 24 | 7 9 13 23 | syl3an | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) |
| 25 | 24 | rgen3 | ⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ∀ 𝑧 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) |
| 26 | xrge0plusg | ⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) | |
| 27 | 5 26 6 | isomnd | ⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ oMnd ↔ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ∀ 𝑧 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) ) |
| 28 | 3 21 25 27 | mpbir3an | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ oMnd |