This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpsfrnel | ⊢ ( 𝐺 ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 | ⊢ ( 𝐺 ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) | |
| 2 | 3ancoma | ⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) | |
| 3 | 2onn | ⊢ 2o ∈ ω | |
| 4 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 5 | 3 4 | ax-mp | ⊢ 2o ∈ Fin |
| 6 | fnfi | ⊢ ( ( 𝐺 Fn 2o ∧ 2o ∈ Fin ) → 𝐺 ∈ Fin ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐺 Fn 2o → 𝐺 ∈ Fin ) |
| 8 | 7 | elexd | ⊢ ( 𝐺 Fn 2o → 𝐺 ∈ V ) |
| 9 | 8 | biantrurd | ⊢ ( 𝐺 Fn 2o → ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ) |
| 10 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 11 | 10 | raleqi | ⊢ ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | 1oex | ⊢ 1o ∈ V | |
| 14 | fveq2 | ⊢ ( 𝑘 = ∅ → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ∅ ) ) | |
| 15 | iftrue | ⊢ ( 𝑘 = ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 16 | 14 15 | eleq12d | ⊢ ( 𝑘 = ∅ → ( ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) ) |
| 17 | fveq2 | ⊢ ( 𝑘 = 1o → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 1o ) ) | |
| 18 | 1n0 | ⊢ 1o ≠ ∅ | |
| 19 | neeq1 | ⊢ ( 𝑘 = 1o → ( 𝑘 ≠ ∅ ↔ 1o ≠ ∅ ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝑘 = 1o → 𝑘 ≠ ∅ ) |
| 21 | ifnefalse | ⊢ ( 𝑘 ≠ ∅ → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑘 = 1o → if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) = 𝐵 ) |
| 23 | 17 22 | eleq12d | ⊢ ( 𝑘 = 1o → ( ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| 24 | 12 13 16 23 | ralpr | ⊢ ( ∀ 𝑘 ∈ { ∅ , 1o } ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| 25 | 11 24 | bitri | ⊢ ( ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| 26 | 9 25 | bitr3di | ⊢ ( 𝐺 Fn 2o → ( ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) |
| 27 | 26 | pm5.32i | ⊢ ( ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) |
| 28 | 3anass | ⊢ ( ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ) ) | |
| 29 | 3anass | ⊢ ( ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) ) | |
| 30 | 27 28 29 | 3bitr4i | ⊢ ( ( 𝐺 Fn 2o ∧ 𝐺 ∈ V ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| 31 | 2 30 | bitri | ⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀ 𝑘 ∈ 2o ( 𝐺 ‘ 𝑘 ) ∈ if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |
| 32 | 1 31 | bitri | ⊢ ( 𝐺 ∈ X 𝑘 ∈ 2o if ( 𝑘 = ∅ , 𝐴 , 𝐵 ) ↔ ( 𝐺 Fn 2o ∧ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝐺 ‘ 1o ) ∈ 𝐵 ) ) |