This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpsfrnel | |- ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 | |- ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) |
|
| 2 | 3ancoma | |- ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) |
|
| 3 | 2onn | |- 2o e. _om |
|
| 4 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 5 | 3 4 | ax-mp | |- 2o e. Fin |
| 6 | fnfi | |- ( ( G Fn 2o /\ 2o e. Fin ) -> G e. Fin ) |
|
| 7 | 5 6 | mpan2 | |- ( G Fn 2o -> G e. Fin ) |
| 8 | 7 | elexd | |- ( G Fn 2o -> G e. _V ) |
| 9 | 8 | biantrurd | |- ( G Fn 2o -> ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) |
| 10 | df2o3 | |- 2o = { (/) , 1o } |
|
| 11 | 10 | raleqi | |- ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) ) |
| 12 | 0ex | |- (/) e. _V |
|
| 13 | 1oex | |- 1o e. _V |
|
| 14 | fveq2 | |- ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) |
|
| 15 | iftrue | |- ( k = (/) -> if ( k = (/) , A , B ) = A ) |
|
| 16 | 14 15 | eleq12d | |- ( k = (/) -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` (/) ) e. A ) ) |
| 17 | fveq2 | |- ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) |
|
| 18 | 1n0 | |- 1o =/= (/) |
|
| 19 | neeq1 | |- ( k = 1o -> ( k =/= (/) <-> 1o =/= (/) ) ) |
|
| 20 | 18 19 | mpbiri | |- ( k = 1o -> k =/= (/) ) |
| 21 | ifnefalse | |- ( k =/= (/) -> if ( k = (/) , A , B ) = B ) |
|
| 22 | 20 21 | syl | |- ( k = 1o -> if ( k = (/) , A , B ) = B ) |
| 23 | 17 22 | eleq12d | |- ( k = 1o -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` 1o ) e. B ) ) |
| 24 | 12 13 16 23 | ralpr | |- ( A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
| 25 | 11 24 | bitri | |- ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
| 26 | 9 25 | bitr3di | |- ( G Fn 2o -> ( ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
| 27 | 26 | pm5.32i | |- ( ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
| 28 | 3anass | |- ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) |
|
| 29 | 3anass | |- ( ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
|
| 30 | 27 28 29 | 3bitr4i | |- ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
| 31 | 2 30 | bitri | |- ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
| 32 | 1 31 | bitri | |- ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |