This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdifid | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | ⊢ ( 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 3 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) | |
| 4 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 6 | 2 3 5 | 3bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 7 | eliun | ⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ) | |
| 8 | eldif | ⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ) | |
| 9 | opelxp | ⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) | |
| 10 | df-br | ⊢ ( 𝑖 I 𝑗 ↔ 〈 𝑖 , 𝑗 〉 ∈ I ) | |
| 11 | vex | ⊢ 𝑗 ∈ V | |
| 12 | 11 | ideq | ⊢ ( 𝑖 I 𝑗 ↔ 𝑖 = 𝑗 ) |
| 13 | 10 12 | bitr3i | ⊢ ( 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 = 𝑗 ) |
| 14 | 13 | necon3bbii | ⊢ ( ¬ 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 ≠ 𝑗 ) |
| 15 | 9 14 | anbi12i | ⊢ ( ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 16 | 8 15 | bitri | ⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 17 | 16 | anbi2i | ⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 18 | 17 | 2exbii | ⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 19 | eldifi | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → 𝑝 ∈ ( 𝐴 × 𝐵 ) ) | |
| 20 | elxpi | ⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) ) | |
| 21 | simpl | ⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑝 = 〈 𝑖 , 𝑗 〉 ) | |
| 22 | 21 | 2eximi | ⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
| 23 | 19 20 22 | 3syl | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
| 24 | 23 | ancli | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
| 25 | 19.42vv | ⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
| 27 | ancom | ⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) | |
| 28 | eleq1 | ⊢ ( 𝑝 = 〈 𝑖 , 𝑗 〉 → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 30 | 29 | pm5.32da | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 31 | 27 30 | bitrid | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 32 | 31 | 2exbidv | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 33 | 26 32 | mpbid | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 34 | 28 | biimpar | ⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 35 | 34 | exlimivv | ⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 36 | 33 35 | impbii | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 37 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) | |
| 38 | simprl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ { 𝑦 } ) | |
| 39 | velsn | ⊢ ( 𝑖 ∈ { 𝑦 } ↔ 𝑖 = 𝑦 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 = 𝑦 ) |
| 41 | simpl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 42 | 40 41 | eqeltrd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ 𝐴 ) |
| 43 | simprr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) | |
| 44 | 43 | eldifad | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ 𝐵 ) |
| 45 | 43 | eldifbd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ¬ 𝑗 ∈ { 𝑦 } ) |
| 46 | velsn | ⊢ ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) | |
| 47 | 46 | necon3bbii | ⊢ ( ¬ 𝑗 ∈ { 𝑦 } ↔ 𝑗 ≠ 𝑦 ) |
| 48 | 45 47 | sylib | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ≠ 𝑦 ) |
| 49 | 48 | necomd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ≠ 𝑗 ) |
| 50 | 40 49 | eqnetrd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ≠ 𝑗 ) |
| 51 | 42 44 50 | jca31 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 52 | 51 | adantll | ⊢ ( ( ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 53 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 54 | 53 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑦 } ) ) |
| 55 | 53 | difeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) ) |
| 56 | 55 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 57 | 54 56 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 58 | 57 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 59 | 58 | biimpi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 60 | 52 59 | r19.29a | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 61 | simpll | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝐴 ) | |
| 62 | vsnid | ⊢ 𝑖 ∈ { 𝑖 } | |
| 63 | 62 | a1i | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ { 𝑖 } ) |
| 64 | simplr | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝐵 ) | |
| 65 | simpr | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ≠ 𝑗 ) | |
| 66 | 65 | necomd | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ≠ 𝑖 ) |
| 67 | velsn | ⊢ ( 𝑗 ∈ { 𝑖 } ↔ 𝑗 = 𝑖 ) | |
| 68 | 67 | necon3bbii | ⊢ ( ¬ 𝑗 ∈ { 𝑖 } ↔ 𝑗 ≠ 𝑖 ) |
| 69 | 66 68 | sylibr | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ¬ 𝑗 ∈ { 𝑖 } ) |
| 70 | 64 69 | eldifd | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) |
| 71 | sneq | ⊢ ( 𝑥 = 𝑖 → { 𝑥 } = { 𝑖 } ) | |
| 72 | 71 | eleq2d | ⊢ ( 𝑥 = 𝑖 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑖 } ) ) |
| 73 | 71 | difeq2d | ⊢ ( 𝑥 = 𝑖 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑖 } ) ) |
| 74 | 73 | eleq2d | ⊢ ( 𝑥 = 𝑖 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) |
| 75 | 72 74 | anbi12d | ⊢ ( 𝑥 = 𝑖 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) ) |
| 76 | 75 | rspcev | ⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 77 | 61 63 70 76 | syl12anc | ⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 78 | 60 77 | impbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 79 | 78 | anbi2i | ⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 80 | 37 79 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 81 | 80 | 2exbii | ⊢ ( ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 82 | 18 36 81 | 3bitr4i | ⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 83 | 6 7 82 | 3bitr4i | ⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 84 | 83 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I ) |